
Nick Nikiforakis

CSE 361: Web Security

Infrastructure Security

HTTP Desync Attacks

HTTP Front-End and Back-End Servers

• In real-world settings, you often have a reverse proxy

• Multiple incoming requests (different TCP connections)

• Single TCP connection between front-end and back-end servers

• What happens if nginx and Django have a different understanding of

how long a HTTP request is?

3

HTTP: How does a server determine length of content?

• Option 1: Content-Length: $length header

• Read the value, subsequently read $length bytes

• Option 2: Transfer-Encoding: chunked

1. Read single line, treat as hexadecimal representation of $length for data
to come

• Stop reading if $length = 0

2. Read $length bytes

3. Go to step 1

• What happens if you have both?

• RFC 2616 says: If a message is received with both a Transfer-Encoding
header field and a Content-Length header field, the latter MUST be
ignored.

4

Pitfalls in parsing HTTP headers

• What happens if front-end takes first occurrence of the header, but

back-end takes the last?

5

POST / HTTP/1.1

Host: example.com

Content-Length: 6

Content-Length: 5

12345G

POST / HTTP/1.1

Host: example.com

Content-Length: 6

Content-Length: 5

12345G

POST / HTTP/1.1

Host: example.com

Content-Length: 6

Content-Length: 5

12345G

[https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn]

Pitfalls in parsing HTTP headers

• Now assume a second request, from a benign client

6

POST / HTTP/1.1

Host: example.com

Cookie: session=1234

Content-Length: 6

123456

POST / HTTP/1.1

Host: example.com

Content-Length: 6

Content-Length: 5

12345G

POST / HTTP/1.1

Host: example.com

Cookie: session=1234

Content-Length: 6

123456

POST / HTTP/1.1

Host: example.com

Content-Length: 6

Content-Length: 5

12345

GPOST / HTTP/1.1

Host: example.com

Cookie: session=1234

Content-Length: 6

123456

[https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn]

Result: Desync Attacks

• Front- and Back-end have different understanding of requests

• Can smuggle in requests

• Can hijack other user's requests

7

Result: Desync Attacks

• Front- and Back-end have different understanding of requests

• Can smuggle in requests

• Can hijack other user's requests

8

POST / HTTP/1.1

Host: example.com

Content-Length: 57

Content-Length: 1

1POST HTTP /sendmessage?to=attacker

Host: example.com

X: X

A
tt
a

c
k
e

r

POST /sendmessage?to=user HTTP/1.1

Host: example.com

Content-Length: 14

message=secret

V
ic

ti
m

POST HTTP /sendmessage?to=attacker

Host: example.com

X: XPOST /sendmessage?to=user HTTP/1.1

Host: example.com

Content-Length: 14

message=secret

POST / HTTP/1.1

Host: example.com

Content-Length: 57

Content-Length: 1

1

B
a
c
k
e
n
d

Additional problems in Desync attacks

• Some back-end systems look for the substring "chunked"

• Attack: use Content-Length to fool front-end into accepting single request,

use Transfer-Encoding: Xchunked to force TE for back-end

• Some back-end systems allow for whitespaces other than space

• Transfer-Encoding:\tchunked ignored by front-end, understood by back-end

9

Transport Layer Security

Network Attacker

• Resides somewhere in the communication link between client and

server

• Tries to disturb the confidentiality, integrity and authenticity of the

connection

• Observation of traffic (passive eavesdropper)

• Fabrication of traffic (e.g., injecting fake packets)

• Disruption of traffic (e.g., selective dropping of packets)

• Modification of traffic (e.g., changing unencrypted HTTP traffic)

• "Man in the middle"

11

Possible types of a network attacker

• Within same network (ARP poisoning)

• Internet Service Provider (complete access to all traffic)

• Law Enforcement (access to traffic for specific user/to specific server)

• ... GCHQ, NSA, et al. (everywhere really)

12

Network attackers on the Web

• Active attacker

• tries to modify, e.g., the response

• Comcast added advertisements into unencrypted sites

• Passive attacker

• tries to eavesdrop on exchange to learn information

• e.g., credentials

13

Security in HTTP

• There is no security in HTTP.

• Solution: encapsulate HTTP traffic in secure channel

• used to be SSL (HTTP via SSL)

• nowadays Transport Layer Security (TLS)

• TLS adds security to HTTP

• end-to-end encryption

• server authentication

• optional client authentication (rarely used in practice)

14

Background: Symmetric vs. Asymmetric Encryption

15

Image credit: https://www.ssl2buy.com/wiki/symmetric-vs-asymmetric-encryption-what-are-differences

Background: uses for asymmetric encryption

• Encryption for confidentiality

• Anyone can encrypt a message

• With symmetric crypto, must know the secret key to encrypt

• Only someone who knows the private key can decrypt

• Secret keys are only stored in one place

• Digital signatures for authentication

• Only someone who knows the private key can sign

• Everyone who knows the public key can validate the signature

• Session key establishment

• Exchange messages to create a secret session key

• Then switch to symmetric cryptography for performance

16

History of the Protocol

17

SSL 1.0 – internal
Netscape design

• Lost in the mists of time

Early 1994

SSL 2.0 – Netscape

• Several weaknesses

Nov. 1994

SSL 3.0 – Netscape and
Paul Kocher

Nov. 1996

TLS 1.0 – Internet
standard

• Based on SSL 3.0, but not
interoperable (uses different
cryptographic algorithms)

Jan. 1999

TLS 1.1

Apr. 2006

TLS 1.2

Aug. 2008

TLS 1.3

Aug. 2018

Transport Layer Security

• Replaces Secure Sockets Layer (SSL)

• Provides security for connection

• integrity ensured by HMAC

• confidentiality ensured by symmetric encryption

• authentication with public-key cryptography

• Support numerous Cipher Suites

• define key exchange, encryption and MAC types

18

(Very simplified) connection establishing in TLS with

RSA

19

Nonceclient, cipherlistclient

Nonceserver, cipherlistserver

certificateserver

pubserverPMS

PMS =

random

ChangeCipherSpec

ChangeCipherSpec

MS = KDF(PMS,

Nonceserver, Nonceclient)

MS = KDF(PMS,

Nonceserver, Nonceclient)

TLS Cipher Suites (RFC 5246)
Cipher Suite Key Exchange Cipher MAC

TLS_NULL_WITH_NULL_NULL NULL NULL NULL

TLS_RSA_WITH_NULL_MD5 RSA NULL MD5

TLS_RSA_WITH_NULL_SHA RSA NULL SHA

TLS_RSA_WITH_NULL_SHA256 RSA NULL SHA256

TLS_RSA_WITH_RC4_128_MD5 RSA RC4_128 MD5

TLS_RSA_WITH_RC4_128_SHA RSA RC4_128 SHA

TLS_RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES_EDE_CBC SHA

TLS_RSA_WITH_AES_128_CBC_SHA RSA AES_128_CBC SHA

TLS_RSA_WITH_AES_256_CBC_SHA RSA AES_256_CBC SHA

TLS_RSA_WITH_AES_128_CBC_SHA256 RSA AES_128_CBC SHA256

TLS_RSA_WITH_AES_256_CBC_SHA256 RSA AES_256_CBC SHA256

TLS_DH_anon_WITH_RC4_128_MD5 DH_anon RC4_128 MD5

TLS_DH_anon_WITH_3DES_EDE_CBC_SHA DH_anon 3DES_EDE_CBC SHA

TLS_DH_DSS_WITH_AES_128_CBC_SHA DH_DSS AES_128_CBC SHA

TLS_DH_RSA_WITH_AES_128_CBC_SHA DH_RSA AES_128_CBC SHA

TLS_DHE_DSS_WITH_AES_128_CBC_SHA DHE_DSS AES_128_CBC SHA

TLS_DHE_RSA_WITH_AES_128_CBC_SHA DHE_RSA AES_128_CBC SHA

TLS_DH_anon_WITH_AES_128_CBC_SHA DH_anon AES_128_CBC SHA

TLS_DH_DSS_WITH_AES_256_CBC_SHA DH_DSS AES_256_CBC SHA

TLS_DH_RSA_WITH_AES_256_CBC_SHA DH_RSA AES_256_CBC SHA

TLS_DHE_DSS_WITH_AES_256_CBC_SHA DHE_DSS AES_256_CBC SHA

TLS_DHE_RSA_WITH_AES_256_CBC_SHA DHE_RSA AES_256_CBC SHA

TLS_DH_anon_WITH_AES_256_CBC_SHA DH_anon AES_256_CBC SHA

20

No protection

Uses RSA (certificate) for

key exchange, AES 256 in

CBC mode for encryption

and SHA256 as MAC

Uses ephemeral Diffie-

Hellman with RSA for key

exchange, AES 256 CBC for

encryption and SHA256 as

MAC

(Very simplified) connection establishing in TLS with

RSA
• Client sends list of available ciphers

• server answers with his list

• server selects first common suite

• by default, uses client's priority, not its own

• Server transmits RSA certificate (including public key)

• Client generates PreMasterSecret, sends encrypted PMS to server

• Client and Server derive MasterSecret from PMS and nonces

• Crypto keys derived from MasterSecret used for data exchange

21

(Very simplified) connection establishing in TLS

22

Nonceclient, cipherlistclient

Nonceserver, cipherlistserver

certificateserver

pubserverPMS

PMS =

random

ChangeCipherSpec

ChangeCipherSpec

MS = KDF(PMS,

Nonceserver, Nonceclient)

MS = KDF(PMS,

Nonceserver, Nonceclient)
Give me your

private key

now!

Decrypting TLS traffic after the fact

• Requirement for decryption: compute MasterSecret

• based on nonces and PMS

• Both nonces are transmitted in clear text

• Client-generated PMS is encrypted with public key of server

• if private key is compromised, attacker may decrypt previously recorded

PMS

• Problem: server's RSA key does not change

• Solution: use ephemeral keys for key exchange to achieve forward

secrecy

23

Forward Secrecy

• "Forward Secrecy" refers to inability to decrypt after the fact

• key material is no longer available

• compromising one key cannot compromise any other keys

• Ensures past TLS sessions stay secure even if a server’s private key is
stolen later

• Desirable against Nation State Actors

• Requirement: generate ephemeral keys which cannot be recovered
from the traffic

• even if the private RSA key of the server is leaked

• Analogy: we are using disposable locks for each conversation

24

Basics of Diffie-Hellman key exchange

• Two parties want to establish shared key

• agree on common prime p and generator g (in TLS, given by the server)

• parties generate private keys a and b

• compute public keys as gprivate mod p

• knowing private keys allows to calculate common key K

• Bottom line: once you delete ephemeral

private key, common secret cannot be

recovered

25

h
tt

p
s
:/

/u
p

lo
a

d
.w

ik
im

e
d

ia
.o

rg
/w

ik
ip

e
d

ia
/c

o
m

m
o

n
s
/1

/1
3

/D
if
fi
e

-H
e
ll
m

a
n

-S
c
h

l%
C

3
%

B
C

s
s
e
la

u
s
ta

u
s
c
h

.s
v
g

(Very simplified) connection establishing in TLS with

DHE

26

Nonceclient

Nonceserver

certificateserver

ClientKeyExchange: C

PMS

Sc mod p

MS = KDF(PMS,

Nonceserver, Nonceclient)

MS = KDF(PMS,

Nonceserver, Nonceclient)

ServerKeyExchange: S,

sign(Nc, Ns, p, g, S)server

PMS

Cs mod p

SSL Stripping

• Specific case of man-in-the-middle attack

• presented at Blackhat 2009 by Moxie Marlinspike

• Goal: ensure that all traffic from victim is plaintext

• attacker establishes HTTPS connection and forwards request

• changes all links/redirects to HTTP

• while rewriting HTML to show the target as HTTPS

27

HTTP HTTPS

Forcing HTTPS: HTTP Strict Transport Security

• HTTP header (Strict-Transport-Security) send by server

• only valid if sent via HTTPS

• Strict-Transport-Security: max-age=<expiry in seconds>
• includeSubDomains: header is valid for all subdomains

• preload: allows for inclusion in preload list

• ensures that site cannot be loaded via HTTP until expiry is reached

• Caveat: need to visit page once to get header

• solution: HSTS preload list (https://hstspreload.org/)

• only possible with at least 18 weeks max-age, includeSubDomains

and automatic redirect from HTTP

28

Abusing HSTS for Tracking purposes

• HTTP Strict Transport Security controls connection behavior
• once header is transmitted to client, all traffic to domain is forced

via HTTPS

• security feature, persisted across browsing sessions (also in
incognito)

• Can be used to track user
1. generate random ID for user on client

2. for each bit set to 1, retrieve server resource
• https://<bit>.tracking.attacker.com/set

• server sets HSTS header for each response

3. to read ID, include script from each subdomain
• <script src="http://<bit>.tracking.attacker.com/get"></script>

• HSTS-enabled subdomains automatically redirected by browser

• on server, return id[<bit>] = 1 if script is accessed via HTTPS

29

TLS 1.3 vs. TLS 1.2

• TLS 1.3 was rolled out in 2018

• According to SSL Labs, 70% of sites
surveyed support it

• New features

• Simplified handshake leading to reduced
RTT for new connections

• Removal of outdated/vulnerable ciphers

• Removal of compression

• Encryption starts earlier in the handshake
protecting more of the communication

• Including the server's certificate

• Mandatory forward secrecy

30

HTTPS Certificates

Authenticity of Public Keys

?

Problem: How does Alice know that the public key
 she received is really Bob’s public key?

private key

Alice
Bob

public key

Distribution of Public Keys

• Public announcement or public directory

• Risks: forgery and tampering

• Public-key certificate

• Signed statement specifying the key and identity

• sigAlice(“Bob”, PKB)

• Common approach: certificate authority (CA)

• An agency responsible for certifying public keys

• Browsers are pre-configured with 100+ of trusted CAs

• A public key for any website in the world will be accepted by the browser if

certified by one of these CAs

CA Hierarchy

• Are all Certificate Authorities (CAs), root CAs?

• Do all websites have to get certificates from a root CA?

• A Root CA signs certificates for intermediate CAs, they sign certificates

for lower-level CAs, etc.

• Certificate “chain of trust”

• sigVerisign(“SBU”, PKSB), sigSB(“Nick N.”, PKNick)

• CA is responsible for verifying the identities of certificate requestors,

domain ownership

Certificate Hierarchy

What power do they have?

Who trusts their certificates?

Establishing trust in server's certificate

• Certificate is a

• "digitally signed document that binds a subject
to some other information ... identity
certificates bind names to keys... " (Gollmann's
Computer Security book)

• "token that binds an identity to a cryptographic
key" (Bishop's Computer Security: Art and
Science)

• Need means to establish trust in certificate

• Solution: Public Key Infrastructure

• implements a chain of trust to presented
certificate

36

Establishing trust in server's certificate

• Certificates bind key material to entity

• On technical level, certificate is a

combination of

• the server's public key,

• its identity (domain name/common name),

• and validity timestamps

• (some more information on purpose of certificate

and other technical details, e.g., allowed aliases)

• signed with issuer's (Certificate Authority)

private key

37

Establishing trust in server's certificate

• Trusting a certificate boils down to trusting
the CA

• several root CAs integrated into browsers

• CAs may be allowed to sign other CA's
keys

• Example stonybrook.edu

• certificate signed by InCommon RSA
Server CA

• ... which is signed by USERTrust RSA
Certification Authority

• ... which is in the browser

38

Root Stores

• The place where all the certificates of trusted certificate authorities (root CA
certificates) are held is called a “root store”

• Different operating systems have slightly different processes for approving new CAs
but the processes typically boil down to:

• Comply with various baselines for CAs

• Comply with local laws

• Pass yearly audits

• Show business value to user base of the OS

• Most applications use the root stores provided by the underlying operating system

• On MS Windows, you can access it by typing “certmgr.msc” in the “Run” dialogue

• Firefox is a notable exception since it ships with its own root store

• Linux distributions commonly use this root store

39

Interlude: Server Name Indication

• Single server may host several domains

• TLS connection is made to IP address before Host header is sent

• certificate validation is based on the domain name though

• In "good old days", only one certificate per IP possible

• one certificate containing all domains hosted on the machine

• horrible to maintain (e.g., adding a domain, revoking a domain's certificate)

• Solution: Server Name Indication

• client sends desired domain name to server

• server decides which certificate to present

• widely adopted in browsers and servers since 2010

40

Validating ownership of a domain

• Most CAs use "domain validation"
• send email to registrant (or

webmaster@domain.com)

• use DNS TXT entry with random token

• ask owner to host file at certain path on their
domain (Let's encrypt)

• More expensive solution: Extended
Validation
• requires proof of legal identity (e.g., Company)

and physical location

• Distinction no longer visible by default

• Problem: what if ownership changes?
• need means to revoke certificate

41

mailto:webmaster@domain.com

Revoking certificates with CRLs

• Certificate Revocation Lists (CRLs)

• frequently updated by CAs

• contains list of all certificates which have been revoked

• e.g., because of compromised keys

• downloaded by browsers in regular intervals

• Several issues

• interval of updates by CAs

• interval of updates by browsers

• blacklist does not ensure validity

• CRLs are (being) deprecated from browsers

42

Online Certificate Status Protocol (OCSP)

• Turn CRL approach around

• client checks validity on request

• response is signed to allow for
verification

• Also has several drawbacks

• potentially high load on OCSP servers

• clients often implement "tryLater"
incorrectly

• connect anyways, check again later

• privacy leak

• OCSP server knows all HTTPS servers you
visited

• Not enabled by default in all browsers

• Chrome team claims "performance issues"

43

OCSP Stapling

• TLS-enabled servers regularly query OCSP server

• get "ticket" with limited validity

• OCSP response is "stapled" to TLS handshake

• Yields several benefits

• less load on OCSP provider

• no privacy leaks

• ... and a minor drawback

• slight delay in invalidated certificates

• Certificates can be extended with Must-Staple

• added to the original certificate

44

https://blog.mozilla.org/security/2013/07/29/ocsp-stapling-in-firefox/

PKI relies on trusted parties

• PKI is based on chain of trust

• Root CAs have ultimate trust

• by design no restriction for which domains certificates may be issued

• Several attack scenarios

• compromised root CA may issue any certificate

• root CA may create intermediate certificate authorities

• Let's look at some horror stories…

45

Comodo

• Comodo is one of the trusted root CAs

• Its certificates for any website in the world are accepted by every browser

• Comodo accepts certificate orders submitted through resellers

• Reseller uses a program to authenticate to Comodo and submit an order

with a domain name and public key, Comodo automatically issues a

certificate for this site

Comodo Break-In

• An Iranian hacker broke into instantSSL.it and globalTrust.it resellers,

decompiled their certificate issuance program, learned the credentials of

their reseller account and how to use Comodo API

• username: gtadmin, password: globaltrust

• Wrote his own program for submitting orders and obtaining Comodo

certificates

• On March 15, 2011, got Comodo to issue 9 rogue certificates for popular

sites

• Including: mail.google.com, login.live.com, login.yahoo.com,

login.skype.com, addons.mozilla.org

Consequences

• Attacker needs to first divert users to an attacker-controlled site instead

of Google, Yahoo, Skype, but then…

• For example, use DNS to poison the mapping of mail.yahoo.com to an IP

address

• … “authenticate” as the real site

• … decrypt all data sent by users

• Email, phone conversations, Web browsing

Q: Does HTTPS help? How about EV certificates?

Message from the Attacker

I'm single hacker with experience of 1000 hacker, I'm single programmer with experience of

1000 programmer, I'm single planner/project manager with experience of 1000 project

managers …

When USA and Isarel could read my emails in Yahoo, Hotmail, Skype, Gmail, etc. without any

simple little problem, when they can spy using Echelon, I can do anything I can. It's a simple

rule. You do, I do, that's all. You stop, I stop. It's rule #1 …

Rule#2: So why all the world got worried, internet shocked and all writers write about it, but

nobody writes about Stuxnet anymore?... So nobody should write about SSL certificates.

Rule#3: I won't let anyone inside Iran, harm people of Iran, harm my country's Nuclear

Scientists, harm my Leader (which nobody can), harm my President, as I live, you won't be

able to do so. as I live, you don't have privacy in internet, you don't have security in digital

world, just wait and see...

http://pastebin.com/74KXCaEZ

DigiNotar Break-In

• In June 2011, the same “ComodoHacker” broke into a Dutch certificate

authority, DigiNotar
• Message found in scripts used to generate fake certificates:

 “THERE IS NO ANY HARDWARE OR SOFTWARE IN THIS WORLD EXISTS WHICH

COULD STOP MY HEAVY ATTACKS MY BRAIN OR MY SKILLS OR MY WILL OR MY

EXPERTISE"

• Security of DigiNotar servers

• All core certificate servers in a single Windows domain, controlled by a

single admin password (Pr0d@dm1n)

• Software on public-facing servers out of date, unpatched

• Tools used in the attack would have been easily detected by an antivirus… if

it had been present

Consequences of DigiNotar Hack

• Break-in not detected for a month

• Rogue certificates issued for *.google.com, Skype, Facebook,

www.cia.gov, and 527 other domains

• 99% of revocation lookups for these certificates originated from Iran

• Evidence that rogue certificates were being used, most likely by Iranian

government or Iranian ISPs to intercept encrypted communications

• Textbook man-in-the-middle attack

• 300,000 users were served rogue certificates

• DigiNotar filed for bankruptcy

TrustWave

• In Feb 2012, admitted issuance of an intermediate CA certificate to a

corporate customer

• Purpose: “re-sign” certificates for “data loss prevention”

• Translation: forge certificates of third-party sites in order to spy on

employees’ encrypted communications with the outside world

• Customer can now forge certificates for any site in world… and they will

be accepted by any browser!

• What if a “re-signed” certificate leaks out?

• Do other CAs do this?

TurkTrust

• In Jan 2013, a rogue *.google.com

 certificate was issued by an intermediate

 CA that gained its authority from the Turkish

 root CA TurkTrust

• TurkTrust accidentally issued intermediate CA certs to customers who

requested regular certificates

• Ankara transit authority used its certificate to issue a fake *.google.com

certificate in order to filter SSL traffic from its network

• This rogue *.google.com certificate was trusted by every browser in the

world

Symantec

• Owns VeriSign and Thawte root CAs

• represents almost 30% of all valid certificates

• Several "mistakes"

• improper checks before issuing EV certificates

• misissued "test" certificates (including google.com, in 2015 and 2017)

• allowed unauthorized employees access to CA keys

• up to 30,000 certificates issued without proper validation

• Google Chrome's penalty

• decrease validity to at most nine months (until Chrome 64)

• disable all EV functionality for Symantec certificates

54

How do we deal with compromised / misbehaving CAs?

55

Certificate Transparency

• Goal: be able to trace back malicious certificates
• e.g., in DigiNotar case

• Proposal: use third party for append-only log
• after (pre-)certificate submission, log issues

Signed Certificate Timestamp (SCT)

• CA adds SCT to certificate, signs it, hands out

• Chrome only allows Symantec certificate with EV
if they are in CT logs
• enforced since June 2016

• Since April 2018, all new certificates must have an
SCT

56

https://www.certificate-transparency.org/how-ct-works

HTTP Public Key Pinning

• An obvious side-effect of having so many certificate authorities is that

even if one goes bad, they can make certificates for any and all TLS-

protected websites

• HTTP Public Key Pinning (HPKP) aims to restrict that

• A web server can send an HPKP header telling the browser to remember

the hash of a few certificates and only accept those for future requests

• HPKP supports pinning both leaf certificates as well as intermediate/root certificates

57

Unpacking the HPKP header

• pin-sha256: Base64 encoded version of the sha256 fingerprint of the
accepted certificate
• Can have more than one

• Current spec requires two, one of which is an inactive, backup one

• max-age: Number of seconds that the browser should enforce this for

• includeSubdomains: Enforce this policy on all subdomains of the website

• report-uri: Report violations to this specific URL
• Presumably useful for identifying MITM attempts

58

Downsides of HPKP

• Too difficult and too dangerous

• If your certificate expires, or accidentally deleted, or is compromised and you get a
new one without having sent the right fingerprint for that certificate ahead of time,
you are effectively DoS-ing yourself

• Users will not be able to connect to your website, their browser will not allow them to

• This can also be abused by attackers who get access to your server (RansomPKP
attack)

1. Bad guys get access to server

2. Push new valid certificate with new pinning

• Anyone who can prove domain ownership can get a certificate for that domain

3. Good guys get back control of their website

4. Now they need the right certificate that the attackers created because their users
cannot connect to them

5. Attackers can sell them the certificate for the “right” price

59

Downsides of HPKP

• Too difficult and too dangerous

• If your certificate expires, or accidentally deleted, or is compromised and you get a
new one without having sent the right fingerprint for that certificate ahead of time,
you are effectively DoS-ing yourself

• Users will not be able to connect to your website, their browser will not allow them to

• This can also be abused by attackers who get access to your server (RansomPKP
attack)

1. Bad guys get access to server

2. Push new valid certificate with new pinning

• Anyone who can prove domain ownership can get a certificate for that domain

3. Good guys get back control of their website

4. Now they need the right certificate that the attackers created because their users
cannot connect to them

5. Attackers can sell them the certificate for the “right” price

60

DNS Certification Authority Authorization (CAA)

• Can we restrict the CAs who are allowed to issue certificates for our
domains?

• DNS entry only meant for authorization of CAs

• flag currently always set to 0, in the standard for future use

• <flag> issue "CA"
• allows CA to issue certificates for domain

• can be set to issue ";" to ensure no certificates are issued

• <flag> issuewild "CA"
• allows CA to issue wild-card certificates for domain

• <flag> iodef "mailto:caa@domain.com"
• any policy-violating attempt of a certificate must be reported there

• should also be notified about any certificates being issued

61

CAA Quiz

• Let's Encrypt can issue certificates for www.stonybrook.edu

• Let's Encrypt and DigiCert can issue certificates for cs.stonybrook.edu

• Nobody can issue wildcard certs for stonybrook.edu

• Nobody can issue certificates for nossl.stonybrook.edu

• Any violations for the latter should be reported to

admins@stonybrook.edu

62

www.stonybrook.edu CAA 0 issue 'letsencrypt.org'
cs.stonybrook.edu CAA 0 issue 'digicert.com'
cs.stonybrook.edu CAA 0 issue 'letsencrypt.org'
stonybrook.edu CAA 0 issuewild ';'
nossl.stonybrook.edu CAA 0 issue ';'
nossl.stonybrook.edu CAA 0 iodef 'mailto:admins@stonybrook.edu'

mailto:admins@cispa.saarland

Economics of SSL

• Up until a few years ago, SSL/TLS was something that only websites

handling sensitive data would need to get

• Banks

• Social Networks

• Email providers

• Etc.

• Even though the price of certificates has gone down, today one would

need to pay between $10 and $100 for a simple domain-verified (DV)

certificate

• Wildcard certificates (e.g. *.example.com) cost more

• Symantec, GeoTrust, RapidSSL, Thawte are all common providers

63

Economics of SSL

• Process for a traditional DV certificate

1. Go to a commercial certificate provider

2. Pay the fee

3. Prove that you own the domain

• Receive email on an address listed in your WHOIS information

• Place a file on your root directory with a specific file-name and file-content

• Add a DNS record specified by the SSL provider

4. Generate a Certificate Signing Request on your system (e.g. using

openssl) and a private key and upload the CSR to the certificate provider

5. Receive your certificate in an email

6. Set up your webserver to use that certificate

64

Economics of SSL

• This was the only way of doing things up until 2016 when Let’s Encrypt

became publicly available

• Let’s Encrypt is a certificate authority that provides free domain-verified

certificates

• They were not the first cost-free provider but they had the backing and PR of

large companies

• They provided software that makes the fetching and installation of a

certificate, essentially automatic

65

Let’s Encrypt

• Let’s Encrypt uses a challenge-response protocol called ACME

(Automated Certificate Management Environment) to verify that a client

is indeed the owner of a domain name, before it issues a free certificate

• The most popular implementation of ACME is that of certbot

• https://certbot.eff.org/

66

Let’s Encrypt growth

67

SSL Telemetry

68

Everyone uses Let’s Encrypt…including the bad guys

• Since everyone can now have an SSL certificate, so can the bad guys

• https://www.totallypaypal.com

• https://www.paypal.com.joesbakery.com

• Websites with SSL have been traditionally thought of as “secure” and

“safe” so phishing attacks may work better on SSL websites

69

Response by Let's Encrypt

• Certificate Authorities are not supposed to be content watchdogs

• A CA should issue a DV certificate to anyone who can prove ownership of a

given domain

• https://letsencrypt.org/2015/10/29/phishing-and-malware.html

• This will require re-educating users about the meaning of https

• “Secure” and “safe” are not the same thing

• HTTPS guarantees “secure” but does not say anything about “safe”

70

https://letsencrypt.org/2015/10/29/phishing-and-malware.html

To summarize the differences between the two

71

Vision for the web and Let’s Encrypt

• By removing the financial cost and technical-know-how barriers, the

backers of Let’s Encrypt are pushing for an HTTPS-only web

• This is the opposite of what we used to have a few years ago

• Google and Firefox are already penalizing non-HTTPS websites

• "Default" is now HTTPS, not HTTP

72

Firefox - HTTPS

73

Firefox - HTTPS

74

Chrome - HTTPS

75

Chrome - HTTP

76

Not only UI penalties

• Google Chrome engineers are also pushing for making powerful features
unavailable on websites that do not utilize HTTPS

• Current list of features

• Geolocation

• Device motion/orientation

• Notifications

• AppCache

• getUserMedia

• Google search has also been using SSL support as a ranking feature

• If your site does not support HTTPS, all other things being equal, it will be lower-
ranked than those websites that do support HTTPS

77

What about TLS implementations?

78

OpenSSL Incident

• Code overhaul of OpenSSL in 2006
• using automated tool Valgrind to look for

errors

• discovered reading of uninitialized data

• Code was rewritten to remove usage of
uninitialized data
• actually, data was meant to add

randomness

• instead, PRNG only seeded with PID -
only 32k values

• Result: trivial for attacker to
precompute all 32k values
• allowed for decryption of every TLS

connection

• (same for a lot of SSH keys)

79

SSL/TLS Handshake

Android
app

Hello

Here is my certificate

I am Chase.com

Issued by GoDaddy to

AllYourSSLAreBelongTo.us

Ok!

Failing to Check Hostname

“Researchers at the University of Texas at Austin and

Stanford University have discovered that poorly

designed APIs used in SSL implementations are to

blame for vulnerabilities in many critical non-browser

software packages. Serious security vulnerabilities

were found in programs such as Amazon’s EC2 Java

library, Amazon’s and PayPal’s merchant SDKs,

Trillian and AIM instant messaging software, popular

integrated shopping cart software packages, Chase

mobile banking software, and several Android

applications and libraries. SSL connections from these

programs and many others are vulnerable to a man in

the middle attack…”

 - Threatpost (Oct 2012)Major payment processing gateways,
client software for cloud computing,
integrated e-commerce software, etc.

Goto Fail
Here is PayPal’s certificate
And here is my signed Diffie-Hellman value

… verify the signature on the DH value using
the public key from the certificate

if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
 goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
 goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
 goto fail;
 goto fail;
if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
 goto fail; …
err = sslRawVerify(...);
…
fail: … return err …

Signature is verified here

???

https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-

bug-explained-plus-an-unofficial-patch/

Complete Fail Against MITM

• Discovered in February 2014

• All OS X and iOS software vulnerable to man-in-the-

middle attacks

• Broken TLS implementation provides no protection

against the very attack it was supposed to prevent

• What does this tell you about quality control for

security-critical software?

Heartbleed

• "Heartbeat" mechanism in OpenSSL to ensure that a server
is still alive
• Hey server. Are you there? If so, respond with "Parrot" (6 chars)

• "Parrot"

• Heartbleed vulnerability (buffer overread)
• Server trusts the client for the length of the string

• Hey server. Are you there? If so, respond with "Parrot" (999 chars)

• "Parrot e3 5c 29 2b a3 b7 35 93 db 29 2c 66 0d 48 11 64

5f f2 9f 4e d7 ca c4 a6 e3 01 24 97 0a dd 75 15

ec 4a 10 e9 b8 93 98 30 af ba 48 5d d5 57 4d a2

53 28 a0 0a aa fa 5b c2 dd 56 38 15 74 52 6f 80

a2 63 6d 22 cc 58 af 50 cf fb 51 9f 7b f0 c9 f4

4b d5 a5 f1 90 15 09 b5 80 03 02 6b e4 c3 97 0c

23 c8 fb 76"

84

Adjacent memory containing

passwords, cookies, private

keys, etc.

What can we do about these?

• As web application developers

• Limited options that should still be exercised

• Attack-surface reduction

• Firewalls

• Intrusion detection

• Quick patching

• Developers of TLS implementations

• Use fuzzing and static analysis to discover and correct bugs

• Test suites

• Switch to more secure programming languages

85

Summary

86

Credits

• Original slide deck by Ben Stock

• Some slides by Vitaly Shmatikov

• Modified and extended by Nick Nikiforakis

87

	Slide 1
	Slide 2: HTTP Desync Attacks
	Slide 3: HTTP Front-End and Back-End Servers
	Slide 4: HTTP: How does a server determine length of content?
	Slide 5: Pitfalls in parsing HTTP headers
	Slide 6: Pitfalls in parsing HTTP headers
	Slide 7: Result: Desync Attacks
	Slide 8: Result: Desync Attacks
	Slide 9: Additional problems in Desync attacks
	Slide 10: Transport Layer Security
	Slide 11: Network Attacker
	Slide 12: Possible types of a network attacker
	Slide 13: Network attackers on the Web
	Slide 14: Security in HTTP
	Slide 15: Background: Symmetric vs. Asymmetric Encryption
	Slide 16: Background: uses for asymmetric encryption
	Slide 17: History of the Protocol
	Slide 18: Transport Layer Security
	Slide 19: (Very simplified) connection establishing in TLS with RSA
	Slide 20: TLS Cipher Suites (RFC 5246)
	Slide 21: (Very simplified) connection establishing in TLS with RSA
	Slide 22: (Very simplified) connection establishing in TLS
	Slide 23: Decrypting TLS traffic after the fact
	Slide 24: Forward Secrecy
	Slide 25: Basics of Diffie-Hellman key exchange
	Slide 26: (Very simplified) connection establishing in TLS with DHE
	Slide 27: SSL Stripping
	Slide 28: Forcing HTTPS: HTTP Strict Transport Security
	Slide 29: Abusing HSTS for Tracking purposes
	Slide 30: TLS 1.3 vs. TLS 1.2
	Slide 31: HTTPS Certificates
	Slide 32: Authenticity of Public Keys
	Slide 33: Distribution of Public Keys
	Slide 34: CA Hierarchy
	Slide 35: Certificate Hierarchy
	Slide 36: Establishing trust in server's certificate
	Slide 37: Establishing trust in server's certificate
	Slide 38: Establishing trust in server's certificate
	Slide 39: Root Stores
	Slide 40: Interlude: Server Name Indication
	Slide 41: Validating ownership of a domain
	Slide 42: Revoking certificates with CRLs
	Slide 43: Online Certificate Status Protocol (OCSP)
	Slide 44: OCSP Stapling
	Slide 45: PKI relies on trusted parties
	Slide 46: Comodo
	Slide 47: Comodo Break-In
	Slide 48: Consequences
	Slide 49: Message from the Attacker
	Slide 50: DigiNotar Break-In
	Slide 51: Consequences of DigiNotar Hack
	Slide 52: TrustWave
	Slide 53: TurkTrust
	Slide 54: Symantec
	Slide 55: How do we deal with compromised / misbehaving CAs?
	Slide 56: Certificate Transparency
	Slide 57: HTTP Public Key Pinning
	Slide 58: Unpacking the HPKP header
	Slide 59: Downsides of HPKP
	Slide 60: Downsides of HPKP
	Slide 61: DNS Certification Authority Authorization (CAA)
	Slide 62: CAA Quiz
	Slide 63: Economics of SSL
	Slide 64: Economics of SSL
	Slide 65: Economics of SSL
	Slide 66: Let’s Encrypt
	Slide 67: Let’s Encrypt growth
	Slide 68: SSL Telemetry
	Slide 69: Everyone uses Let’s Encrypt…including the bad guys
	Slide 70: Response by Let's Encrypt
	Slide 71: To summarize the differences between the two
	Slide 72: Vision for the web and Let’s Encrypt
	Slide 73: Firefox - HTTPS
	Slide 74: Firefox - HTTPS
	Slide 75: Chrome - HTTPS
	Slide 76: Chrome - HTTP
	Slide 77: Not only UI penalties
	Slide 78: What about TLS implementations?
	Slide 79: OpenSSL Incident
	Slide 80: SSL/TLS Handshake
	Slide 81: Failing to Check Hostname
	Slide 82: Goto Fail
	Slide 83: Complete Fail Against MITM
	Slide 84: Heartbleed
	Slide 85: What can we do about these?
	Slide 86: Summary
	Slide 87: Credits

