
Nick Nikiforakis

CSE 361: Web Security

Basic Client-Side Technologies/Security

Adding State to HTTP

• Recall: no inherent state in HTTP

• server does not keep any state after TCP connection is closed

• For static content sites, no problem

• developing "applications" is impossible though

• e.g., shopping cart on Amazon

• Need to introduce state in HTTP

• in the form of "sessions"

2

Option 1: HTTP Authentication

• Associate user with state on server

• unclear when the "sessions" ends

• Authentication done by Web server

• Not by the application served via the server

• Implements "pulling" of credentials

• User: "Please give me resource X"

• Server: "No, please tell me who you are"

• User: "Ok, I am alice and my password is nu7^yjUtasw "

• Logout non-trivial

• browser always sends along authentication header

GET /protected

GET /protected HTTP
Authorization: Basic … <base64>

HTTP 401 Unauthorized

WWW-Authenticate: Basic realm="…"

3

Option 2: Session Identifier in URL

• Generate random token on first page visit

• Ensure that session ID is in all links

• Potential for accidental leakage is high

• "Here is the link to the product on Amazon"

• URL is transmitted in Referer header

• Session leaked to all included third-party sites

http://example.org/
cart.html?sess=9b2dac168331

4

Option 3: Cookies

• Generate random token on first page visit

• Sent to client via Set-Cookie header

• Client always sends along cookies in every

request to the server

• important: regardless of initiating site

• Cookies are persisted in the browser

• controllable by Expires option in cookie

• default: delete on session end (when browser is closed)

• Ending session: delete cookie

5

Cookie directives

• <name>=<value>

• Expires=<Date>, determines when cookie should be deleted

• Max-Age=<Seconds>, determines when cookie should be deleted

• Domain=<domain>, defaults to current host

• Can be set for parent domains (and their subdomains)

• If nothing is specifically set, cookie is only set for current domain without

subdomains

• Domain=example.com on websec.example.com sets cookie for

*.example.com and example.com

• Path=<path>, only set cookie for this path (and sub-paths)

6

Cookie directives

• HttpOnly, disallows access from JavaScript via document.cookie

• Secure, only transmit cookie over secure connection

• Can only be set from HTTPS connections

• SameSite=None/Strict/Lax

• Strict: do not transmit cookies on any cross-site request

• Lax: only transmit cookies on "safe" top-level navigation

• Safe methods (per RFC 7231): GET, HEAD, OPTIONS, (TRACE)

• None: explicit opt-in for cross-site requests, requires Secure

• Browsers will default to SameSite=Lax soon (Chrome already does so, FF

and Edge warn)

7

Cookie examples

• Set-Cookie: test=1; Domain=.example.com; Secure; HttpOnly;
SameSite=none

• Sets a cookie with name "test" to the value "1"

• Cookie will be sent to any HTTPS request made to example.com and any
subdomain

• Cookie is not accessible from JavaScript

• Cookie will be sent on cross-site requests as well

• Cookie will be deleted on browser close (no explicit expiry date)

• Set-Cookie: test=1; Domain=.example.com; HttpOnly;
SameSite=none

• Recent versions of Chrome and Firefox will not accept this (SameSite=None
requires Secure)

8

Form-based authentication

• Default today: HTML forms

• Server provides form with username and password fields

• User fills and submits form

• Server decides if credentials were correct, and "upgrades" session

• actually better: create new session (more on that later)

• Password fields hide input with ***

• besides this, not different than any other input field

• accessible via JavaScript

• sent in clear text via GET or POST to server

• can be sent cross-domain (a.com can send data to b.com)

9

Form-based authentication

10

Authentication with cookies - caveats

• Cookies were not designed with security in mind

• cookies readable and writeable from JavaScript (unless HttpOnly is used)

• if set for a given domain, valid for all sub-domains

• added to all requests, regardless of the origin of requesting site

• Several security problems from this (which we cover later)

• Session Hijacking

• Session Fixation

• Cross-Site Request Forgery

• Cross-Site Script Inclusion

11

JavaScript

12

What is JavaScript in the browser?

• JavaScript core

• ECMAScript specified language

• initially developed for Netscape in 1995 as LiveScript/JavaScript

• The Document Object Model (DOM)

• provides access to the rendered HTML document

• allows controlling the browsing window via JavaScript

• Browser-based standard APIs

• Math, WebStorage, XMLHttpRequest, …

13

JavaScript Core

• Functional programming language

• object model is prototype-based

• no class hierarchy

• allows for closures and anonymous functions

• No native concurrency model

• JavaScript in an execution context (e.g., a Web document) is single-

threaded

• Concurrency is event-driven

• Do something, yield process, wait for wake-up

• e.g., implemented by setTimeout with (potentially anonymous) callback function

• loading the same page twice might not execute instructions in the same order

14

JavaScript in Web documents

• JavaScript can be included in script tags or event handlers

• <script>var hello="world";</script>

• <script src="http://hello.world"></script>

• Click me

• Each script tag or event handler is separate parsing block

• code not executed when parsing error occurs

• other scripts’ execution is not interrupted

• Rendering of document stops until script is executed

• especially important when HTML is written by JavaScript

• All scripts run in same global space (of including page)

15

JavaScript Objects

• JavaScript is highly flexible

• Dynamic typing at its best

• Lots of implicit type casting

• "a" + 1 => "a1"

• "a" + undefined => "aundefined"

• alert(42) => alert(42.toString())

• Primitives types (strings, numerical, ..) and Object types

• New properties can be added to existing objects

var myObj = new myObject();
myObj.a = 1;

16

JavaScript Prototype-based Object Model

• All objects have a prototype

• Prototype can have prototype as well

• so-called prototype chaining

• Function call is propagated along chain until either

• corresponding function is found

• prototype is null (for Object)

var a = "a";
a.__proto__
// > String {length: 0, constructor: function,…}
a.__proto__.__proto__
// > Object {__defineGetter__: function, …}
a.__proto__.__proto__.__proto__
// > null

17

JavaScript Prototype-based Object Model

• Prototypes can be set and

manipulated during runtime

• Prototype changes also affect

existing objects

18

Number.prototype.toString = function() {
return "Gotcha";

};

// This will display "Gotcha" instead of 42
alert(new Number(42));

var fortytwo = new Number(42);
// This will display "42"
alert(fortytwo);
Number.prototype.toString = function() {

return "Gotcha again";
};

// This will display "Gotcha again"
alert(fortytwo);

JavaScript Objects

• Objects are instances of

functions

• Also true for built-in objects

• Almost everything has a
toString()

19

function myObj(p1, p2) {
this.m1 = p1;
this.m2 = p2;
}
var x = new myObj(1,2);
// > myObj {m1: 1, m2: 2}

Number
// > function Number() { [native code] }
Number.constructor
// > function Function() { [native code] }

myObj.toString()
"function myObj(p1, p2) {
this.m1 = p1;
this.m2 = p2;
}"

JavaScript Variable Scoping

• Variables without var keyword always in global scope

• Variables with var keyword as specified in current scope (function-level)

• Gotcha: in top-level script code, that is the global scope

• Public members of object use this keyword, private members var

function Container(param) {
var member = param;

}

var a = new Container(1);
a.member
// > undefined

function Container(param) {
this.member = param;

}

var a = new Container(1);
a.member
// > 1

function Container(param) {
var member = param;
this.getmember = function() {
return member; }

}

var a = new Container(1);
a.getmember()
// > 1

20

Getters, Setters, and Freezing

• ECMAScript introduced the Object.defineProperty method

• get and set to allow read/write access to properties

• configurable to prevent redefinition for the property

var obj = new Container(1);
var mValue = 42;

Object.defineProperty(obj, "member", {
get: function() { return mValue; },
set: function(newValue) { mValue = newValue; },
configurable: false});

obj.member
// > 42
obj.member = 43
mValue
// > 43
Object.defineProperty(obj, "member", {get: function() { return 1; }});
// > Uncaught TypeError: Cannot redefine property: member

21

(Almost) everything in JavaScript can be

overwritten/deleted

eval("var a='hello'")
a
// > "hello"

eval = alert;

eval("var a='hello');
// opens alert box

var oAlert = alert;
alert = function(x) {

console.log(x);
oAlert(x);

}
alert(1);
// log 1 to console
// opens alert box

var oAlert = alert;
delete alert;

alert(1);
// Uncaught ReferenceError: alert is not defined

oAlert(1)
// opens alert box

22

Document Object Model (DOM) and Browser APIs

• Exposed to JavaScript through global objects

• document: Access to the document (e.g., cookies, head/body)

• navigator: Information about the browser (e.g., UA, plugins)

• screen: Information about the screen (e.g., dimension, color depth)

• location: Access to the URL (read and modify)

• history: Navigation

• Global object is called window, current object is self

a = "Hello";
a === window.a;
> true

document.location === location;
> true

self === window;
> true

23

Manipulating the rendered document

• HTML represented by a tree of HTMLElement objects

• Element attributes of HTML nodes map to properties of HTMLElement

object

• document.body.children[1].style.color = "red"

• Several methods/properties to change document

• document.write

• element.innerHTML/element.outerHTML

• element.attribute

• element.appendChild

• Elements with id automatically in global scope

document

head

title ...

body

script div

24

Access to other documents

• Handles to other frames in same browsing window

• parent

• top

• frames[]

• Handles to popup windows

• var handle = window.open("http://example.org")

• window.opener

• Initially no security considerations...

25

The location object

• location.href: complete URL including fragment

• location.host: HTTP host, including port (if any)

location.hostname: only HTTP host

location.port: only the port (if non-standard)

• location.protocol: protocol

• location.pathname: path

• location.search: URL query

• location.hash: URL fragment

26

Summary

27

Credits

• Original slide deck by Ben Stock

• Modified by Nick Nikiforakis

28

	Slide 1
	Slide 2: Adding State to HTTP
	Slide 3: Option 1: HTTP Authentication
	Slide 4: Option 2: Session Identifier in URL
	Slide 5: Option 3: Cookies
	Slide 6: Cookie directives
	Slide 7: Cookie directives
	Slide 8: Cookie examples
	Slide 9: Form-based authentication
	Slide 10: Form-based authentication
	Slide 11: Authentication with cookies - caveats
	Slide 12: JavaScript
	Slide 13: What is JavaScript in the browser?
	Slide 14: JavaScript Core
	Slide 15: JavaScript in Web documents
	Slide 16: JavaScript Objects
	Slide 17: JavaScript Prototype-based Object Model
	Slide 18: JavaScript Prototype-based Object Model
	Slide 19: JavaScript Objects
	Slide 20: JavaScript Variable Scoping
	Slide 21: Getters, Setters, and Freezing
	Slide 22: (Almost) everything in JavaScript can be overwritten/deleted
	Slide 23: Document Object Model (DOM) and Browser APIs
	Slide 24: Manipulating the rendered document
	Slide 25: Access to other documents
	Slide 26: The location object
	Slide 27: Summary
	Slide 28: Credits

