
14

ATTACK PATTERN

03/2011 www.hakin9.org/en 15

Direct Object Reference or, How a Toddler Can Hack Your Web Application

In this era, many miscreants have changed their
game. It’s easier for them to impersonate you or steal
your private data from a vulnerable Web application

than to take control of the Extended Instruction Pointer
(EIP) register of your CPU. The reason is simple. As
a software industry, we have more experience writing
native applications in C and C++ than writing Web
applications in PHP and JavaScript. People still write
bugs in their code, but they are definitely harder to find
and exploit than it was 10 years ago.

In this article we will investigate one type of Web
application vulnerability, namely Direct Object
Reference. A Direct Object Reference occurs when
an identifier, used in the internal implementation of
a Web application, is exposed to users. When this is
done insecurely, it can lead to a lot of trouble. This
vulnerability is probably one of the easiest to exploit but
is so deadly and prevalent that it claims the 4th position
in OWASP’s Top 10 Web Application security risks [2].
Many institutions have fallen victim to it, with the most
recent example of an Australian financial company
which was vulnerable in a way that made it possible
for anyone to access other peoples’ private financial
information [1].

Vulnerable Web Application
In order to make explaining easier, we will use as an
example a dummy Web application that allows logged-
in users to send personal messages to each other. All
the messages exchanged between members are stored
in a specific table in an SQL database as follows: see
Table 1.

The message_id column contains auto-incremented
values, unique for every message. The columns to
and from contain the user identifiers of the sender
and recipient of any given message. The title column

contains the title of each message and lastly the
message column contains the actual message
exchanged between two users. Now lets look at some
of the PHP functions used by the Web application to
display a user’s Inbox and allow him to read incoming
messages (Listing 1).

Viewing the INBOX
The function get_message_titles() is responsible for
providing logged-in users an overview of their Inboxes.
The first thing that the function does is to check whether
the user is logged-in. It does this by checking whether
the superglobal $_SESSION array contains a key titled
user_id. This key is set by the Web application when
the user successfully logs in, and is typically a unique
identifier in the Users table of the application much like
the unique identifier of each message in the Messages
table. We will not need that function in our discussion
thus for the sake of brevity, it is not shown in Listing 1.
If that key is not set, then the code redirects the user to
the login page of the Web application and returns.

If the user is indeed logged-in then the user’s
user_id is extracted from his session. Note that the

There is no point in denying that everyday software is steadily moving
from desktop applications to Web applications. When you can check your
mail, play games, create documents and file your tax report without ever
leaving your browser, then you are indeed a citizen of the Web.

Direct Object
Reference or,
How a Toddler Can Hack Your Web Application

Figure 1. Table “messages” containing personal messages that
users exchanged with each other

Message_id From To Title Message
...

776 23 11 “Hey!” “Hey man!

What news?</br>

777 11 25 “Foo...” “U there?”

778 25 42 “No Title” “Kthnxbye!”

779 23 11 “Welcome” “Welcome to our
site!...”

...

14

ATTACK PATTERN

03/2011 www.hakin9.org/en 15

Direct Object Reference or, How a Toddler Can Hack Your Web Application

current user. For instance, if we assume that the current
logged-in user corresponds to user_id value 11, the SQL
query will be:

SELECT message_id, title FROM Messages where to = 11;

The database server will return two rows of results,
specifically the messages with message _ id equal to 776
and 779. For each of them the Web application will
create an HTML link with the message’s title.

Reading a Speci�c Message
When a user decides to read a specific message, he
or she can click on the desired title, which will cause

user_id is passed as a parameter to the intval()
function. The intval() function is a built-in function of
PHP that returns the integer value of the parameter
that the programmer passes to it. This function is
very useful for Web application developers since it
allows them to easily filter out erroneous requests
or stop malicious users who attempt SQL injections
or Cross-Site Scripting attacks using fields that the
programmer knows should be integers. Since we will
be incorporating this value to an SQL query we want
to make sure that it is an integer and nothing more
than that.

In the next step, the Web application will query its
database for all messages that have as a recipient the

Listing 1. Code of vulnerable Web application

<?php

session_start();

function get_message_titles(){

 /*Redirect users if they are not logged in*/

 if (!isset($_SESSION[‘user_id’])){

 header("Location: http://www.example.com/login.php");

 return;

 }

 $user_id = intval($_SESSION[‘user_id’]);

$result = mysql_query("SELECT message_id, title FROM Messages where to = {$user_id}");

 while($row = mysql_fetch_array($result)){

 print " {$result[‘title’]}";

 print "
";

 }

 return;

}

function read_message(){

 /*Redirect users if they are not logged in*/

 if (! isset($_SESSION[‘user_id’])){

 header("Location: http://www.example.com/login.php");

 return;

 }

 if (! isset($_GET[‘id’])) return;

 $message_id = intval($_GET[‘id’]);

 $result = mysql_query("SELECT * FROM Messages where message_id = {$message_id}");

$row = mysql_fetch_array($result);

 print " From: " . uid_to_username($row[‘from’]) . "
";

 print " Title : {$row[‘title’]}
";

 print " Message: {$row[‘message’]}
";

 return;

}

?>

16

ATTACK PATTERN

03/2011 www.hakin9.org/en 17

Direct Object Reference or, how a toddler can hack your Web application

previously described Web application. Sure, they check
for SQL injections whenever they use data coming-in
from the user but you feel that something is not quite
right...

Lets look closely at the read_message() function and at
the resulting SQL query. We saw that if a user clicks
on link http://example.com/read_message.php?id=776,
the Web application will use the id parameter to find and
retrieve the appropriate message. In fact, this is exactly
where the vulnerability lies-- the Web application
uses ONLY the id that the user provided as a means
of reading a message. For the user with user_id equal
to 11, the Web programmer assumed that he or she
can click only on the links provided by the get_message_
titles() function, thus only click on one of the following
links:

• http://example.com/read_message.php?id=776
• http://example.com/read_message.php?id=779

While it is true that only the these two links will be
available in his INBOX, nothing is stopping the
user from changing the id parameter to any value

the Web application to call the function read_message().
This function, like get_message_titles() first checks if the
user who is requesting the reading of a message is
logged-in and redirects the user if not. In the next step
the value of the GET parameter named ‘id’ is retrieved
(given that it exists) and filtered through the integer value
function. Thus, continuing with our previous example, if
the user clicks on the following link: http://example.com/
read_message.php?id=776, the $message_id variable of
the read_message function will contain the number 776.
In the next step, the message id is used to retrieve the
full message from the messages table and thus in this
example case the SQL query will be the following:

SELECT from,title,message FROM Messages where message_id = 776;

The Web application uses the data and prints it out as
HTML to the user. The user reads the message and is
happy. Or maybe not ?

Exploiting IT
Those of you who have a security-oriented mindset [4]
may feel a bit uncomfortable with the workings of the

Listing 2. A simple Python script which downloads and saves the �rst 1024 messages from the

import urllib

import os

os.mkdir("./messages")

for i in range(0,1024):

 current_message = urllib.urlopen("http://example.com/read_message.php?id=%d" % i)

 out_file = open("./messages/%d.txt" % i,"w")

 out_file.write(current_message.read())

 out_file.close()

Listing 3. Adding authorization checks to the vulnerable SQL query

<?php

function read_message(){

 /*Redirect users if they are not logged in*/

 if (! isset($_SESSION[‘user_id’])){

 header("Location: http://www.example.com/login.php");

 return;

 }

 if (! isset($_GET[‘id’])) return;

 $message_id = intval($_GET[‘id’]);

$user_id = intval($_SESSION[‘user_id’]);

 $result = mysql_query("SELECT * FROM Messages where message_id = {$message_id} and to= {$user_id}");

 /* The rest of the code is the same with the original function*/

 [...]

}

?>

http://example.com/read_message.php?id=776
http://example.com/read_message.php?id=776
http://example.com/read_message.php?id=779
http://example.com/read_message.php?id=776
http://example.com/read_message.php?id=776

16

ATTACK PATTERN

03/2011 www.hakin9.org/en 17

Direct Object Reference or, How a Toddler Can Hack Your Web Application

at all. Thus, the user with user _ id 11, can ask for
http://example.com/read_message.php?id=778 and start
reading a message that was sent to another user! Once
the malicious user is convinced that the above works then
just 10 lines of Python code obtains the full database of
messages: Listing 2.

And that’s it! So simple, that even a toddler could do
it! The problem in the design of this Web application
is that the user can directly reference messages in
the database. If we generalize this, there is a problem
when a user is allowed to directly reference objects

without any authorization checks in place. Thus, this
vulnerability falls under the class of Direct Object
Reference (DOR) vulnerabilities. In the next section we
will see how to repair this Web application and also give
some general guidelines for other Web applications.

Defenses
There are more than one ways of defending against
DOR vulnerabilities and it is up to the Web programmer
to choose the appropriate one for his Web application.
Lets review some of these ways:

Listing 4. Adding an extra layer of indirection to defeat DOR attacks

<?php

function get_message_titles(){

 /*Redirect users if they are not logged in*/

 if (! isset($_SESSION[‘user_id’])){

 header("Location: http://www.example.com/login.php");

 return;

 }

 $message_array = array();

 $array_index = 0;

 $user_id = intval($_SESSION[‘user_id’]);

$result = mysql_query("SELECT message_id, title FROM Messages where to = {$user_id}");

 while($row = mysql_fetch_array($result)){

 $message_array[$array_index] = $result[‘message_id’];

 print " {$result[‘title’]}";

 print "
";

 $array_index += 1;

 }

 $_SESSION[‘message_array’] = $message_array;

 return;

function read_message(){

 /*Redirect users if they are not logged in*/

 if (! isset($_SESSION[‘user_id’])){

 header("Location: http://www.example.com/login.php");

 return;

 }

 if (!isset($_SESSION[‘message_array’])) return;

 $message_array = $_SESSION[‘message_array’];

 $fake_id = intval($_GET[‘id’]);

 if (!isset($message_array[$fake_id])) return;

 $message_id = $message_array[$fake_id];

/* The rest of the code is the same with the original function*/

 [...]

?>

http://example.com/read_message.php?id=778

18

ATTACK PATTERN

03/2011 www.hakin9.org/en 19

Authorization
If a Web application knows which objects can be
accessed by which users then the Web programmer
can straightforwardly integrate this knowledge into
the code. For example, the messages database
table contains a From column (who sent any given
message) and a To column (who is the recipient of any
given message). Thus anytime that a user requests to
read a specific message, the programmer can verify
whether the user was the recipient or the sender of
that message. Since we have limited ourselves in the
above examples to only the user’s Inbox, the SQL
query in function read_message() can be modified as
shown in Listing 3.

As you can see in the modified lines, the SQL query
now asks for all data given a specific message_id and a
specific user_id. The user_id variable is out of the user’s
control thus even if a malicious user changes the
message_id to a different value, the SQL query will not
match any row in the table and thus return no results.
Additional code could be added at this point to warn
the administrator that someone is attempting to access
resources that are owned by another.

Indirection Layer
Another way of tackling this problem is to add an extra
level of indirection between the references that the
user sees (and is in control of) and the references used
in the back-end of the application. This technique is
useful when the Web application programmer wishes
to hide the implementation details from users. It is
best explained with an example. In their vulnerable
implementation, the function get_message_titles()
reads the message identifiers from the database
and gives the appropriate ones to the user. Then the

function read_message() reads the message identifier
from the user and queries the database directly using
the user-provided value. The above protocol could
be modified so that get_message_titles() transforms
the database values before giving them to the user
and then read_message() transforms them back before
querying the database. For instance, get_message_

titles() and read_message() can be re-written as shown
in Listing 4.

Note the changes done to the code. Before querying
the database we create an array that will hold our
future transformations. For every valid message_id
returned by the database, a new row is created in our
array, that connects an incremented counter ($array_
index) with that message_id. Each link given back to the
user, instead of containing the message_id, holds the
array_index with which the message_id was associated.
Finally, the message_array is stored in the user’s session
so that it can be retrieved by read_message(). The read_
message() simply reverses the procedure. What is
interesting now is that the user no longer receives the
actual values that the database contains but rather a
set of values that correspond (at the server-side) with
the actual values. Thus, the user with user_id equal to
11 will see the following links generated by get_message_
titles():

• http://example.com/read_message.php?id=0
• http://example.com/read_message.php?id=1

Even if a user changed the id to a new value, say
id=2, there is no 2 in the $message _ array read by read _

message() thus the query will fail. Figure 1, shows this
procedure graphically.

Randomized identi�ers
There are cases in which for some reason, the Web
application has no knowledge of which resource
belongs to which user. While certainly this is not the
case in our vulnerable Web application, there are
plenty of real-life examples. One of them is a File
Hosting Service (FHS), a Web service which a user
can utilize to exchange large files with friends. In
the usual scenario, the user visits a FHS, uploads a
file and receives a link to the uploaded file. The link
contains a unique identifier that the service generates

Figure 1. The effects of adding an extra layer of indirection for user
with user_id equal to 11

���

� ���

���

�������������� ��

� ���
�

��

References
• “Financial company heavies researcher for reporting vulnerability” http://www.theregister.co.uk/2011/10/14/�rst_state_su-

per_shoots_messenger/ [1]
• OWASP TOP 10, https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project [2]
• Nick Nikiforakis, Marco Balduzzi, Steven Van Acker, Wouter Joosen and Davide Balzarotti, “Exposing the lack of Privacy in File

Hosting Services”, in the Proceedings of the 4th USENIX Workshop of Large-scale Exploits and Emergent Threats, 2011 [3]
• Bruce Schneier, “The Security Mindset”, http://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html [4]

http://example.com/read_message.php?id=0
http://example.com/read_message.php?id=1
http://www.theregister.co.uk/2011/10/14/first_state_super_shoots_messenger/
http://www.theregister.co.uk/2011/10/14/first_state_super_shoots_messenger/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html

18

ATTACK PATTERN

03/2011 www.hakin9.org/en 19

and associates with that specific file. The FHS user
can then proceed to share this link with any friends
or colleagues. These services typically do not require
users to create accounts, thus they do not have the
means to remember who uploaded a file nor can
they know with whom the user shared the link to
the uploaded file. In these cases, the only protection
available is to use randomized identifiers so that users
can not easily guess the identifiers of other resources.
Thus, a FHS can assume that if one has a valid URL
to a file that they should be given access to it simply
because it should be impossible to recreate it [3]. In
our Web application example where the message_id
is an auto-incrementing number, a user can find the
previous identifier simply by subtracting one from the
current identifier. If instead, each message identifier
was a random identifier, the user could no longer
easily guess the identifiers of other users’ messages.
The only way to figure out other valid identifiers is
through brute-force methods which usually take a
great amount of time, hopefully much greater than the
time resources of the attacker.

Conclusion
The evolution of Web sites, from simple static HTML
pages to full-blown dynamic Web applications marked a
new era, not only for users but also for attackers. Today,
any Web application programmer has to keep in mind
tens of ways that a Web application can fall victim to
attackers and code defensively to avoid exploitations.
In this article, you learned about the Direct Object
Reference vulnerability that’s easy to introduce in
code and even easier to exploit. We saw an example
of this vulnerability, the methods to attack it and finally
three ways that a Web programmer can protect his
applications from it.

NICK NIKIFORAKIS
Nick Nikiforakis is currently a PhD student at the Katholieke
Universiteit of Leuven in Belgium. He is interested in all
aspects of computer security, but he mostly focuses on Web
security and on the protection and exploitation of low-level
vulnerabilities in native applications. In the past, Nick has
presented his work in well-known academic conferences (e.g.
Usenix LEET and EuroSEC), local OWASP chapters, AppSecDev
and BeNeLux OWASP events as well as top European hacking
conferences (CONFidence, BruCON and AthCon). All of his
work can be found online at http://www.securitee.org

http://www.securitee.org
mailto:hakin9.org

