Time for Actions: A Longitudinal Study of the
GitHub Actions Marketplace

Narong Chaiwut
Department of Computer Science
Stony Brook University
New York, USA
nchaiwut@cs.stonybrook.edu

Abstract—GitHub Workflows have emerged as one of the most
widely adopted CI/CD platforms, with millions of workflows
integrated into modern software development. With the ability
to encapsulate a subset of workflow functionality into reusable
components known as GitHub Actions, any developer can publish
their actions to the GitHub Actions Marketplace. To date, there
has been no comprehensive analysis of the GitHub Actions
Marketplace in terms of the number of actions, their growth
over time, and their susceptibility to supply-chain attacks.

In this paper, we present a longitudinal study of GitHub
actions, aiming to better understand this important, modern soft-
ware ecosystem. Over a period of four months, we collected and
analyzed over 23K GitHub Actions including their source code as
well as metadata about their creators. Our analysis investigates
marketplace trends, identifies prevalent security issues in GitHub
Actions, and characterizes novel attack vectors, including actions
typosquatting and dangling remote references.

Index Terms—CI/CD, Github Actions, remote references.

I. INTRODUCTION

The software development process has shifted from lin-
ear models such as the Waterfall model to more iterative
and automated approaches like DevOps. DevOps refers to
the automation of processes across various tools and stake-
holders—including development, deployment, and infrastruc-
ture—to enable rapid building, testing, deployment, and mon-
itoring [1]. Many platforms now provide Continuous Inte-
gration and Continuous Deployment (CI/CD) as part of the
DevOps toolchain, such as Jenkins [2], GitLab CI [3], and
GitHub Actions [4]. Among the multitude of available CI/CD
platforms, GitHub Actions is one of the most widely adopted
ones [5], [6].

GitHub introduced GitHub Actions in 2019, and it quickly
gained popularity due to its tight integration with GitHub’s
code hosting platform. This integration allows developers to
define CI/CD pipelines directly within their repositories with-
out needing to use an external platform. To reduce workflow
duplication, GitHub started supporting reusable workflows and
modular steps through third-party actions. These actions can
be created and shared via a centralized ecosystem of reusable
actions called GitHub Actions Marketplace [7].

However, the ability to integrate third-party actions into
one’s workflows introduces a new attack vector related to
software supply-chain security. Malicious actors can publish

Nick Nikiforakis
Department of Computer Science
Stony Brook University
New York, USA
nick @cs.stonybrook.edu

harmful actions to the Marketplace or compromise exist-
ing ones to inject malicious code. In March 2025, indus-
try researchers detected anomalous URL requests originating
from the tj—actions/changed-files action, which
was used by over 24,000 repositories [8]. Further investiga-
tions [9], [10] revealed that attackers were targeting sensi-
tive repositories, including those belonging to Coinbase. This
incident highlights the importance of analyzing the security
posture of GitHub Actions, just as we analyze the posture of
general third-party libraries and packages.

In this paper, we present a longitudinal study analyzing the
GitHub Actions ecosystem. We perform week-by-week crawl-
ing of the GitHub Actions Marketplace to collect metadata on
all available actions, including new and removed entries. This
enables us to identify trends in the adoption of actions, observe
new and deleted actions, and detect potential security issues.

Over a four-month period, we collected a total of 23,757
GitHub Actions. Our analysis shows that the overall number
of actions exhibits a modest increase over time with more
actions added every week than the ones deleted from the
marketplace. Beyond ecosystem growth, we also analyzed
security-related aspects of newly added and removed actions
from the Marketplace, focusing on the way that developers
integrate third-party actions in their code. The results re-
veal that the most frequently observed security issue was
the absence of full-length commit SHA pinning (allowing
attackers to compromise repos via their actions dependencies),
with an average of 304 instances in newly added actions
and 72 in removed actions across our observation period.
Similarly, we also examined remote references within actions —
including external URLs and public IP addresses — to identify
unreachable hosts, dead links, and potential domain misuse,
finding 732 affected actions.

Since developers are the ones who choose to integrate with
third-party actions, we also study the levels of typosquatting
abuse on the Actions marketplace. There, attackers register
typo variants of popular actions with the hopes of capitalizing
on a developer’s typographic errors or confusion as to which
one is the authoritative action. We identified 25 typosquatting
repositories, many of which targeted popular actions such as
actions/checkout.

Our contributions are summarized as follows:

o We developed custom crawlers and longitudinally tracked
the GitHub actions marketplace over a four-month period,
obtaining all code and data from that marketplace.

o We used our collected data to analyze trends in newly
added, removed, and total actions, checking these actions
against known software-supply-chain issues.

e« We conducted the first systematic investigation of ty-
posquatting and remote reference risks (e.g., unreachable
URLs, parked domains, and dead IP hosts) in GitHub
Actions, quantifying the potential takeover of the affected
actions.

II. BACKGROUND
A. Github Actions

GitHub Actions refer to automated workflows designed to
support DevOps processes. Through actions, developers can
run specific workflows during commits, builds, and deploy-
ments of their source code [4]. To set up these workflows,
developers need to create a .github/workflows directory
and define workflow files using the .yml format. Fig. 1
provides a high-level overview of GitHub Actions, which
consist of four primary components: workflows, jobs, steps,
and actions.

Workflow: [12] A workflow is the top-level definition
of the CI/CD pipeline. It allows developers to define and
customize the automation process using the on keyword to
specify triggers. Triggers can be based on time intervals (e.g.,
scheduled runs), code pushes, or pull requests.

Job: [13] A job represents a set of tasks that can be
executed either sequentially or in parallel. Jobs are defined
under the jobs section and are commonly used for tasks
such as building code, running tests, or deploying to external
services. GitHub provides isolated execution environments
called runners (configured via the runs-on keyword), which
can be GitHub-hosted or self-hosted.

Step: [14] Steps are the individual instructions within a job.
Each step performs a specific command or action, such as
executing a script or running a shell command.

Action: [15] An action is a unit of functionality within
a step. While developers can define each step manually,
they also have the option to reuse third-party actions, which

I
name: Simple Github workflows ! Workflow
I
on: push : ¢
I
jobs: I Job
greeting: 1
runs-on: ubuntu-latest I ¢
!
I
steps:
P ! Step
- uses: actions/checkout@v4 : }
- run: echo "Hello from GitHub Actions"
} Action
I

Fig. 1: Github workflow components [11]

help reduce repetition by encapsulating commonly used pro-
cedures. For instance, the widely used third-party action
actions/checkout enables workflows to access the con-
tents of a repository. GitHub allows developers to create three
types of actions: i) Composite Actions, which consist of
a sequence of shell commands or steps that are executed
together to perform a task; ii) JavaScript Actions, which
use Node.js and JavaScript code to perform more complex
logic; and iii) Docker Actions, which run tasks inside a
predefined Docker container environment. Third-party actions
are referenced using the uses syntax and can be either private
or published to the GitHub Actions Marketplace.

B. Github Marketplace

The GitHub Actions Marketplace is the central ecosystem
that provides reusable GitHub Actions for developers. Actions
are organized into various categories, and each listing includes
useful metadata such as the creator’s verification status, the
associated GitHub repository, and a README file describing
the action’s functionality.

To publish a third-party action on the GitHub Market-
place, developers must include a metadata file named either
action.yml or action.yaml at the root of the repository.
This file must define three key components: Inputs - required
arguments passed into the action, Outputs (optional) - values
or artifacts returned from the action, and Runs - the execu-
tion strategy, specifying whether the action is a composite,
JavaScript, or Docker-based.

Finally, developers must create a tag and a release in the
GitHub repository, which will automatically publish the action
to the GitHub Actions Marketplace. Listing. 1 illustrates an
example of the action.yml metadata structure. In this ex-
ample, the action defines who-to—-greet as an input, t ime
as an output, and uses the node20 JavaScript environment,
indicating that the action is implemented using JavaScript.

1 name: ’'Hello World’
description: ’"Gr ¢ ne and recor he ime’

inputs:
who-to—-greet:
6 description:
required: true
8 default: "Wor !

[+ areet

10 outputs:
11 time:
12 description: ’'The time we greeted you’

14 runs:
15 using: ’‘node2
16 main:

r; v Sl

Listing 1: Metadata for GitHub Action consists of inputs,
outputs, and runs [16]

III. METHODOLOGY

To capture the longitudinal trends of the GitHub Actions
Marketplace, we developed a crawling and analysis pipeline
as illustrated in Fig. 2. The first component is a crawler that

)

[0 c) B ‘ -m
o — ~
@ | Github API [} Analysis Typo
B_ n Squatting
@18 :
i = i
— References
T o \)
= | Marketplace RePOSItory xew: cione
Metadata Security
Exist: Pull Analysis

[

Fig. 2: System diagram of our approach.

continuously collects data from the GitHub Actions Market-
place. It scrapes all publicly listed GitHub Actions and clones
the corresponding repositories to our local server. This ensures
that we archive not only the metadata (e.g., name, creator,
stars, and description) but also the actual implementation code
for further analysis. The cloning is particularly useful for
conducting security tests against the code, as well as to be able
to investigate the actions that were later deleted by the platform
or by their owner. The second component is an analysis sys-
tem, which processes the collected data to extract insights from
this evolving ecosystem. This includes analyzing marketplace
trends (e.g., addition and removal rates), identifying security
issues, and detecting potential attack vectors such as dangling
remote references and typosquatting [5], [17], [18].

A. Crawling System

The GitHub Actions Marketplace is dynamic, with new
actions continuously published and existing ones potentially
removed. Since actions are not available via GitHub APIs,
their collection must be done via traditional web crawling.
At the same time, crawling the Actions marketplace is not
trivial given pagination drift (the actions listed on page N are
different at the beginning of the crawl vs. at the end of the
crawl) and an upper limit of 500 pages per actions category,
set by GitHub.

To address both the pagination drift and the page limit
constraint, we sorted the actions in descending order based
on their creation timestamps and launched three consecutive
crawlers across all available pages. The results from each
crawler were then merged, and duplicate entries were removed
to construct a comprehensive dataset of unique GitHub Ac-
tions. To bypass the category-based limitation, we system-
atically crawled 24 categories listed in the GitHub Actions
Marketplace (see Appendix A).

For each category and page, the crawler extracted hyperlinks
to individual GitHub Actions listed in the Marketplace. From
each action page, we collected metadata using the GitHub
API, including: a repository’s identifier, the repository’s URL,
creation date, last-update date, and number of stars. Pagination
drift can cause our crawlers to either miss a new action or
errenously conclude that a previously-listed action is no longer
listed in the marketplace (e.g. is an action deleted or did it
“move” to the page our crawler just finished analyzing?). To
this end, we calculated the rate of false positives by double-
checking the release dates and availability of actions in both

newly detected and removal sets, then recalculated the number
of actions across two consecutive crawls. We observed an
average false positive rate of 0.71 % which is acceptable for
our purposes.

Our pipeline automatically clones the repository of each
discovered action upon first discovery and keeps it up-to-
date by requesting updates upon subsequent crawls. We also
timestamped each repository with the current crawl date,
allowing us to later distinguish between newly added and
unchanged actions.

B. Github Actions Marketplace Analysis

To analyze the ecosystem of the GitHub Actions Market-
place, we began by determining the total number of actions,
as well as identifying newly created and removed actions.
We then computed several key statistics of the Marketplace,
including the percentage of creator-verified actions and the
number of repositories that utilize these actions.

For part of our security analysis, we leveraged
GWChecker [5] to examine both action metadata and
real-world workflow examples in each action repository.
Specifically, we evaluated a full-length commit SHA pinning
practices, focusing on whether actions were referenced
using immutable commit hashes rather than floating tags.
SHA pinning allows a repository to survive a supply-chain
attack whereas floating tags can be abused by attackers to
push arbitrary code to the actions that depend upon the
compromised repo. We also investigated whether the actions
were published by verified creators and whether they were
officially listed on the GitHub Marketplace. Lastly, we
analyzed the types of GitHub events that are used to trigger
these action repositories, obtaining insights into how and
when actions are executed in practice.

Moreover, in addition to direct attack vectors targeting
GitHub Actions—such as compromising the action repos-
itories themselves by script injection—we also explored
typosquatting attacks targeting legitimate GitHub actions
usernames. This is particularly relevant because GitHub
usernames directly correspond to action username identi-
fiers in the GitHub Actions Marketplace. For example, at-
tackers could register the ‘“aactions” GitHub account/orga-
nization name and offer the aactions/checkout ac-
tion with the goal of hijacking some of the integration
meant for actions/checkout. Following prior work [18],
[19], we generated multiple categories of typos, includ-
ing character-omission typos, character-permutation typos,
character-substitution typos, and character-duplication typos.
Other potential attack vectors, such as GitHub repository
hijacking via username deletion and reuse, were excluded
from our analysis due to GitHub’s 90-day waiting period
for re-registering deleted usernames [20], which mitigates the
immediate risk of such attacks.

Lastly, due to the ability of GitHub Actions to include
remote references, we conducted a security analysis focused
on these external dependencies. We extracted all URLs and
IP addresses from the collected action repositories, excluding

TABLE I: Retention and Attribute Changes in the Same GitHub

Actions Between First and Last Crawls

Status Percentage
No Activity 61.0%
Deleted 1.2%
Updated 37.8%
Among Updated Actions:

* Gained Stars 54.6%
» Had Updates 83.9%
» Were Forked 58.8%
* Became Verified Creators 0.1%
» Were Transferred to New Owners 1.5%

those found within commented-out portions of code and
text. For each URL, we performed DNS-based analysis to
check whether the utilized domain names could be resolved.
Additionally, we investigated whether any of the domains ref-
erenced in GitHub actions were parked [21]. In both cases, our
goal is to identify actions that could be abused by adversaries
by the mere purchasing of expired domain names and parked
domains that are for sale.

IV. RESULTS

In this section, we report our findings on the GitHub Actions
Marketplace. Our crawling and data-collection period lasted
from December 18, 2024, to April 9, 2025. In total, we
crawled 1,912 pages across all categories on our first crawl.
The Actions Marketplace was crawled on a weekly basis and
each crawl took approximately eleven hours to extract data,
with an additional four hours to clone/update the identified
actions-related repositories. As of the most recent crawl, we
collected 23,757 GitHub Actions from the Marketplace.

A. GitHub Marketplace Statistics

To analyze the longitudinal differences in GitHub Actions,
we compared the set of retained actions between the first
and last crawls. Specifically, we captured 22,379 actions on

= 12/18/24
6,408’ 04/09/25

3211

3,008

2,740
2,6492:
24422377

1,0832.076

1,431
1363 11641275
[1,0181.064

755 756 663 663

S o
& o

Type

Fig. 3: Github categories comparison between the first and
last crawl

December 18, 2024, and re-examined the same set on April
9, 2025. As shown in Table I, 61.0% of the actions showed
no activity during our monitoring period, indicating that de-
velopers created and published these actions without further
maintenance or involvement, whereas 1.2% of them were
deleted. 37.8% of the actions exhibited one or more updates
(i.e. were under active development) during our observation
period.

Among the active actions, we observed consistent updates
(e.g., repository commits), along with increases in community
engagement metrics, such as stars and forks. In addition, 1.5%
of the actions were transferred to different owners during this
period.

GitHub Marketplace displays a verified creator badge on
actions whose creators have successfully completed GitHub’s
verification process [22]. This badge is meant to enhance
the trustworthiness of actions published by verified creators.
However, only 8 actions (0.1%) changed their status from
unverified to verified creator.

Action categories: The GitHub Actions Marketplace classi-
fies each action into categories to aid developers in identifying
actions that are relevant to their use cases. At the beginning of
our crawling period on December 18, 2024, there were 24 cat-
egories as represent in Appendix Table IV. When developers
publish an action to the Marketplace, they are allowed to select
up to two categories. Over time, the number of categories
expanded to 32. Despite this expansion, we confirmed that
our crawler continued to cover all actions, even those listed
under the newly added categories.

Fig. 3 shows the distribution of actions across categories,
comparing the first and last crawls (December 18, 2024 and
April 9, 2025, respectively). The category with the largest
number of actions in both crawls is Continuous Integration,
which primarily relates to CI activities such as security check-
ing, with 6,408 actions initially and 6,786 at the end (5.9%
growth). Similarly, the second most common actions category
was Deployment, associated with artifact deployment, showing
3,008 and 3,211 actions, respectively (6.7% growth). Most
categories had significantly lower counts in both the first and
last crawls.

In summary, our data indicates steady growth in the
GitHub Actions ecosystem throughout the collection period.
The most dominant categories remain Continuous Integration
and Deployment, which form the backbone of typical CI/CD
pipelines, while the remaining categories receive compara-
tively less attention.

New and Removed actions: Fig. 4 shows the trend of new,
removed, and total actions over our data-collection period. The
total number of actions has steadily increased since we began
collecting data. Initially, there were 22,379 actions, which
gradually increased to 23,465 by April 9, 2025.

The number of new actions fluctuated over time. The peak
in new actions occurred on April 2, 2025, with 124 new
actions added. In contrast, the number of removed actions was

—— Total
23400

23200
23000

E

8 22800
22600

22400 \/\

22200

> o D D P O ® P P o o
P R R NG R (R R (T A

& ST IO P RO
Date (MM/DD/YY)

(a) Total number of GitHub Actions over time.

—o— New
Removal

Total
o
g

o o o o o o o o o o o o

E I I A N I G I I I\
v AR N N S S RS GRS A NP

S S R A N A R LA A U U

Date (MM/DD/YY)

b
SR
& o°
d

(b) Newly added and removed actions from the Marketplace.

Fig. 4: Week-by-week trends in the GitHub Actions Marketplace.

generally lower than the number of additions, with the most
removed actions (47) observed on our March 5, 2025 crawl.

Creator Verification: To further understand the ecosystem
of actions, we examined the ratio of verified to non-verified
creators. GitHub’s security hardening guidelines recommend
using actions created by verified creators when integrating
third-party GitHub Actions. Each GitHub Action page includes
a creator verification status, which we extracted as part of the
metadata, as described in the section III-A.

The trend in creator verification remained relatively stable
over time. At the beginning of our data collection on December
18, 2024, 4.3 % of creators were verified, while 95.7 % were
not. In the most recent crawl on April 9, 2025, the ratio
was slightly different but showed no significant change: 4.2 %
verified and 95.8 % non-verified. This aligns with findings
reported in previous work [5].

The low verified-to-non-verified ratio may be attributed to
the verification process, which requires creators to successfully
pass GitHub’s verification—a process currently reserved for
organizations. When attempting to become verified creators,
we received the following email response: “The verified cre-
ator badge is currently reserved for organizations that are
a GitHub Technology Partner. At this time, this designation is
not available to individual developers. Only organizations that
have completed the Technology Partner onboarding process
and met our verification requirements are eligible to receive
the badge.”

In summary, our longitudinal analysis of the GitHub
Actions Marketplace revealed that more than 60% of actions
became inactive over time, while only 8 actions changed
their status to verified creator. Moreover, the proportion of
verified creators has remained consistently low. Despite the
overall growth of the Marketplace, verification has not gained
substantial traction, with more than 95% of available actions
being offered by non-verified accounts. We expect that this
phenomenon is largely due to the verified creator badge being
reserved for organizations, and not available to individual
developers.

GitHub Action Usage by Repositories: To analyze the
number of repositories (dependents) that use each GitHub

TABLE II: GitHub Marketplace Actions and Repository Usage

Action ‘ GitHub Repository URL ‘ Repo Usage
actions/checkout | https://github.com/actions/checkout 12,931,705
actions/setup- https://github.com/actions/setup- 2,601,383
node-js- node

environment

Azure/azure- https://github.com/Azure/static-web- 1,974,551
static-web- apps-deploy

apps-deploy

actions/upload- | https://github.com/actions/upload- 1,606,872
a-build-artifact artifact

actions/setup- https://github.com/actions/setup- 1,363,807
python python

actions/cache https://github.com/actions/cache 1,187,697
actions/deploy- | https://github.com/actions/deploy- 1,023,483
github-pages- pages

site

actions/upload- | https://github.com/actions/upload- 1,001,552
github-pages- pages-artifact

artifact

Action, we collected dependent counts from the dependency
graph of each action’s GitHub repository. From our analysis,
only eight actions have been adopted by more than one million
repositories, as presented in Table II.

The most widely used action is actions/checkout,
which is commonly used to set the current workspace for a
GitHub Actions runner used by almost 13M repositories. The
second most popular action is actions/setup-node,
which configures the Node.js version and environment, with
2.6M dependent repositories. Other frequently used actions
include Azure/azure-static-web—-apps-deploy
which deploys artifacts to Azure Static Web Apps;
actions/upload-artifact, which uploads artifacts
from a runner to GitHub; and actions/cache, which
is commonly used to cache dependencies during workflow
execution.

Fig. 5 shows the distribution of GitHub Actions based on the
number of repositories that use them. In the leftmost cluster,
20,477 actions are used by a total of 175,865 repositories. In
contrast, the rightmost cluster contains only 8 actions, which
are collectively used by 23,691,050 repositories.

25M 23,691,050

N
=]
=

Y = |

9,653,190

-
=)
=

v
=

3,125,654

Total Number of Dependents

307,601 1113339 595 789

255,047

175,865

=)
=

Fig. 5: Actions grouped by their level of depedence.

In summary, although the GitHub Actions ecosystem
continues to grow, a small number of actions consistently
dominate repository usage. Specifically, eight actions from just
two accounts, actions and Azure, account for more than
half of all usage. This observation aligns with the findings of
Zimmermann et al. [23], who show that a small number of ac-
counts are responsible for a disproportionately high number of
widely used npm packages. As with all software monocultures,
this is a double-edged sword. From the positive side, assuming
that these accounts and actions contain no vulnerabilities
and cannot be compromised, the majority of action-utilizing
GitHub repos will not suffer from actions-related, supply-chain
attacks. At the same time, these ultra-popular actions are prime
targets for supply-chain attacks given their high ROI in terms
of effort that an attacker would need to expend to compromise
them vs. the yield of a successfull attack.

B. Security Analysis

Security properties: We examine the security properties
defined in prior work [5] to understand i) how they man-
ifest in GitHub Actions and ii) how these properties vary
over time. Our analysis covers both the action metadata
files (action.yml) and the workflow examples located in
the .github/workflows directory of each repository. We
classify the identified security properties into five categories,
as shown in Fig. 6, based on both newly added and removed
actions. The figure presents the number of security-related
instances in each category, which we describe in more detail
below.

1. Execution Control refers to insecure trigger configura-
tions, particularly when actions are set to run on events such
as push or pull_request. In such cases, an attacker could
fork the repository and submit a malicious pull request, po-
tentially leading to unauthorized code execution or unintended
changes in the base branch. Over the course of our analysis,
the number of actions exhibiting this configuration fluctuated.
The highest observed instance occurred on March 26, 2025,
with 136 newly published actions configured in this potentially
insecure manner. In contrast, the number of removed ac-
tions exhibiting this configuration remained consistently lower
throughout the observation period.

After investigating the push and pull_request work-
flow trigger configurations of March 26, we found that most
of them are used for validating or debugging the action
itself. For example, in the case of TypeScript/JavaScript ac-
tions, developers often clone an action template from [24]
that includes vetting workflows such as check_dist.yml
for checking the transpiled output in the dist/ directory,
codegl-analysis.yml for analyzing the action’s code-
base using CodeQL, and linter.yml for static analysis
using super—linter. We consider these push/pull triggers
reasonable, since the root repositories runs them to analyze
the action’s codebase.

2. Access to Secrets captures instances where workflows
or action metadata files contain hardcoded sensitive informa-
tion, such as access tokens for third-party services. Among
newly published actions, this issue was notably less frequent
compared to other security properties. The number of affected
actions remained consistently low across the entire data col-
lection period, both for newly added and removed actions.

3. Unverified Action Use refers to whether workflows invoke
actions authored by unverified creators. As reusable actions
have become more prevalent, developers often include third-
party actions within their testing workflows. These referenced
actions may originate from unverified sources. Among new
actions, we observed fluctuating patterns over time. However,
the number of removed actions exhibiting this behavior was
consistently lower.

4. Not on Marketplace refers to workflows that depend
on GitHub Actions not officially listed in the GitHub Mar-
ketplace. These off-marketplace actions may lack visibility,
community vetting, or trust signals. While not inherently
malicious, their use may introduce additional risks, especially
when sourced from unverified or obscure accounts. On March
26, 2025, we observed a spike in new actions referencing
off-marketplace dependencies, totaling 255 instances. This
increase correlates with a rise in newly collected actions.
In contrast, the number of removed actions referencing off-
marketplace dependencies remained significantly lower due to
the overall low volume of deletions during the same period.

5. Not pinning to a full-length commit SHA refers to the
practice of referencing third-party actions without specifying
their full-length commit SHA [25]. Pinning to a specific SHA
is a recommended security best practice [26], as it ensures
workflows depend on immutable versions of actions, thereby
preventing unintended updates—even if the original repository
is later modified or compromised.

Among all evaluated security properties, the absence of
full-length commit SHA pinning was the most frequently
observed issue when reusing third-party actions. Across all
time frames, newly published actions consistently included
over 304 instances that did not use commit-SHA references.
The largest number of such cases occurred on March 26, 2025,
with 666 new actions lacking SHA-based versioning. Similar
to newly published actions, many removed actions also did
not pin third-party references to a full-length commit hashes,

—e— Insecure Trigger —4— Not on Marketplace f
Access to Secret —< No pinning to a full SHA /\
600 —+— Unverified Action /\

> © o o o o © ©
& & & o & &
& E
Date (MM/DD/YY)

(a) Security properties observed in newly added actions.

—e— Insecure Trigger
Access to Secret
—4— Unverified Action

—4— Not on Marketplace
—< No pinning to a full SHA

° © o o o o © o o o ° o o o
& & & o
o & S & &

Date (MM/DD/YY)

D 9
PN
05 S
po

(b) Security properties observed in removed actions.

Fig. 6: Longitudinal trends of security properties in GitHub Actions: (a) new actions, and (b) removed actions.

with notable peaks on January 15, 2025, and April 2, 2025,
at 267 and 277 instances, respectively.

In summary, our longitudinal analysis of security proper-
ties in GitHub Actions reveals a strong correlation between
the number of security-relevant configurations and the volume
of newly added and removed actions at each time frame.
Despite the continued growth of the GitHub Actions ecosys-
tem, developers have yet to consistently adopt recommended
security practices. Notably, the absence of version pinning to
full-length commit SHA hashes remains a prevalent issue in
GitHub Actions configurations.

Typosquatting: Typosquatting refers to the practice of
registering mistyped variations of legitimate names—to im-
personate or redirect users to malicious resources. This type
of attack is common in web environments, where attackers
register domains similar to popular websites to trick users into
visiting them [18], [27], [28].

In the GitHub ecosystem, this risk extends to repos-
itories and GitHub Actions, as usernames are part of
the action identifier. For example, if a user with the
GitHub username actionx creates a repository named
my_action, the corresponding URL would be: https://
github.com/actionx/my_action. When the action is published
to the GitHub Actions Marketplace, it receives a Mar-
ketplace URL like: https://github.com/marketplace/actions/
action_name, where action_name is defined in the action
metadata file act ion.yml. This Marketplace name must be
globally unique.

To reuse a GitHub Action, a developer spec-
ifies it in the workflow file wusing the format:
github_username/repository@tag, where
github_username is the GitHub account name,

repository is the GitHub Action repository, and tag
refers to the specific version (typically a Git tag).

To analyze the potential for typosquatting in GitHub Ac-
tions, we generated typo variations of GitHub account names
using established typo-generation techniques, as described in
Section III. We focused on usernames collected from the
Marketplace and used only legitimate repository names. Git
tags were excluded from this analysis.

From our analysis, we generated 1,528,049 typo vari-
ants based on 15,527 unique GitHub usernames. Of these,
1,434,247 accounts returned 4xx errors and were discarded,
while 93,802 were valid GitHub account names.

We then mapped the valid typo-based GitHub accounts to
legitimate action repositories to examine the existence of typo-
squatted GitHub Actions. We identified 25 GitHub Actions as-
sociated with typo-based accounts that were active at the time
of analysis. Notably, three of these targeted some of the most
widely used action accounts: actions, aws-actions,
and trufflesecurity. The typo variants for actions
included actoins and actiions, which hosted outdated
clones of popular actions such as checkout, cache, and
upload-artifact. The variant aws—action appeared
to be a misspelling of aws—actions. That specific action
included a warning telling developers not to integrate this spe-
cific action [29] so it could be someone’s experiment or a form
of defensive registration. Lastly, the typo truflesecurity
was a fork of the original trufflesecurity repository.
Most of the typo-squatting repositories were forked years ago
from the authoritative actions and therefore lacked updates
compared to their original actions repositories. While we
could not establish malice through our manual analysis of
these typosquatting actions, they still belonged to third-party
accounts who could, at a moment’s notice, update the actions
to abuse the repositories that have accidentally linked to them.
We contacted all affected stakeholders. A few responded, con-
firmed the typosquatting behavior, and subsequently deleted
the accounts associated with the squatting actions and
actiions.

In summary, typosquatting in the GitHub Actions Market-
place still occurs, although it is not widespread (0.06 % of
actions were squatted). Most of the typo actions were either
direct clones or forks of the original repositories. It is also
worthwhile noting that GitHub metadata can be abused by
attackers to obfuscate the true owner of a repo [30]. For
example, when a GitHub repo is cloned, the original repo’s
history appears as the history of the cloned repo. This makes
it difficult for someone to establish the true owner of the
typosquatting action since it appears to be sharing contributors
with the original one.

https://github.com/actionx/my_action
https://github.com/actionx/my_action
https://github.com/marketplace/actions/action_name
https://github.com/marketplace/actions/action_name

TABLE IIlI: GitHub Actions Referencing Expired Domains
Eligible for Re-Registration

Action‘ Expired Domain ‘ Usage ‘ Verified
1 son**** com 20,921 Yes
2 fak**** com 1,001 Yes
3 sec**** com 564 Yes
4 eeL**** com 301 No
5 my**** com 201 No

C. Remote References

GitHub Actions allow the inclusion of remote refer-
ences—such as URLs or IP addresses—across all action types,
including composite, Docker, and JavaScript-based actions.
This feature introduces an additional attack vector, as refer-
enced URLs may expire and be re-registered by attackers,
even when developers correctly pin third-party actions to
full-length commit SHAs. Expired or abandoned URLs can
also be monetized through services, such as, domain parking.
Moreover, unreachable endpoints (via URLs or IP addresses)
can lead to unexpected behavior or failures during workflow
execution.

In this section, we analyze the security implications of
remote references by performing DNS resolution checks,
domain parking analysis for URLs, and dead host detection
for IP addresses. To prevent abuse of the discovered issues,
we anonymize the affected actions and domain names.

URLs: We began our analysis by resolving DNS records for
9,799,201 URL instances extracted from 23,757 GitHub Ac-
tion repositories. We found that 99.95 % of the instances had
valid DNS resolutions, while 0.05 %—spanning 732 reposi-
tories—contained unresolved DNS entries. These unresolved
URLs referenced a total of 571 unique domains, of which
312 (54.5 %) could be re-registered. For example, the domain
son**** com appeared in the env section of a workflow
within the repository of Actionl, which has more than
20,000 dependent repositories. Table III presents examples of
actions with expired domains that could be re-registered, along
with their usage statistics (how many repos use the affected
action) and creator-verification status.

Although parking domains pose less immediate harm than
re-registered expired domains, they still represent a security
concern. In addition to indicating potential abandonment or
neglect, parked domains may be monetized through adver-
tising and malicious redirections. We identified parked do-
mains by checking the DNS records of referenced URLs
against a known list of domain parking companies [21]. Out
of the 29,657 unique URLs collected from DNS analysis,
194 (0.65%) were detected as parked. An example parked
domain is keyvalue.xyz, which currently hosts as a baseUrl
JavaScript variable in Redacted action.

IP Addresses: Using standard regular expressions, we
extracted 7,013 hardcoded IP-address-like strings across all
collected GitHub Action repositories. Unfortunately, given the
similarity between software versions (e.g. 2.3.4.5) and IP

addresses (e.g. 8.8.8.8), this set of IP addresses has to be
further filtered to establish the true attack surface involving
remote hosts addressed via their IP address.

To this end, we randomly sampled 100 IP addresses from
the dataset for further manual analysis. Among these, 63 %
were valid IP address values. Since ICMP may be blocked by
firewalls, we established whether these hosts were reachable
via port scanning. We conservatively marked a host as “alive”
if it had at least one open port, regardless of whether that port
matched ports referenced in GitHub actions. Of those, 25.4 %
had at least one open port, while 74.6 % had no open ports. In
many cases, the IP addresses without open ports were found
in unit testing files (e.g., within __test___ directories). If
we extrapolate the results from our sample to the entire set
of actions, more than 3,000 hardcoded IP addresses will be
pointing to offline systems.

In summary, while the general threat of remote references
and residual trust is known, our study is the first one that
quantifies its presence in the context of GitHub actions. Ref-
erences (be it expired domain names or available IP addresses
in public clouds) that can be controlled by attackers can be
abused to perform supply-chain attacks to the affected action
and any repos that rely upon that action. Importantly, these
vulnerabilities are not resolved even if SHA pinning is used
since domain names can expire and fall under the control of
an attacker, without the source code of the including action
ever changing.

D. Removed actions and malware

Lastly, to understand whether attackers actively upload
malicious actions to the GitHub Marketplace (as opposed
to compromising existing ones), we analyzed actions that
were removed from the Marketplace during our observation
period. Our hypothesis was that if malicious actions were
being uploaded, some of them would eventually be detected
and removed by GitHub, making removed actions a potential
signal for malicious activity.

We randomly sampled 146 actions that were removed from
the Marketplace during our study period and manually ana-
lyzed their code and metadata for signs of malicious behavior.
However, our analysis did not reveal any clear evidence of
malice. Most removals appeared to be due to benign reasons
such as developers deprecating their actions, consolidating
duplicate functionality, or removing experimental/prototype
actions. This negative result suggests that either attackers are
not frequently attempting to upload overtly malicious actions
to the GitHub Marketplace, or if they are, such actions remain
undetected by GitHub’s security measures. Given GitHub’s
security infrastructure and the visibility of the Marketplace,
we opine that the former explanation is more likely — attackers
appear to prefer compromising existing trusted actions rather
than uploading new malicious ones.

V. RELATED WORK

To the best of our knowledge, we are the first ones to
longitudinally analyze the GitHub Actions marketplace and

son****.com
keyvalue.xyz

quantify vulnerabilities that could be abused in the context
of supply-chain attacks. In this section, we discuss security-
related research areas that are closely related with our work.

A. Github actions analysis

With the growing popularity of GitHub Workflows as a core
component of CI/CD pipelines, several studies have explored
their security implications. Duncan et al. [31] conducted a
study analyzing GitHub Workflows and categorized the key
components, such as jobs, steps, and third-party actions.
They also examined the outdatedness of GitHub Actions
in workflows [32]. Moreover, Deliche et al. [33] conducted
a preliminary study on the dependency relationships within
GitHub Actions, including the evolution of action types and
the characteristics of Docker-based actions. However, these
studies do not address other important security-related issues,
such as, the presence of typosquatting in the actions market-
place.

Benedetti et al. [34] proposed a pattern-matching approach
to detect seven security smells within GitHub Workflows.
Koishybayev et al. [5] introduced ten security properties to
improve detection granularity, analyzing workflows across
various CI/CD platforms. Specifically, they examined whether
GitHub workflows and actions violated the proposed security
conditions, which include: configuration of workflow per-
missions (e.g., whether default permissions are changed to
read-only), workflow triggers (e.g., whether workflows can be
triggered by pull_request), workflow secrets (e.g., storing
secrets in plaintext), unverified action usage (e.g., using actions
created by unverified creators), and references to third-party
actions (e.g., whether a commit SHA is specified when refer-
encing third-party actions). We adopt these security properties
in our work to longitudinally analyze GitHub Actions available
in the Marketplace.

GitHub later introduced CodeQL [35], a taint-tracking-
based static analysis framework designed to identify vulnera-
bilities in Github workflows. Additionally, Muralee et al. [6]
proposed a taint-tracking framework to trace the usage of third-
party actions, enabling more comprehensive security coverage
across CI/CD pipelines.

Beyond GitHub-specific analysis, Gu et al. [36] proposed a
system to analyze the risks of token leakage across popular
CI platforms. They demonstrated how compromised tokens
can lead to privilege escalation, even under the least-privilege
model. In subsequent work, Gu et al. [37] examined caching
practices in CI platforms and their potential security risks. Li
et al. [38] studied the attack surface of third-party plugins
used in CI pipelines and introduced new attack vectors, such
as plugin redirection hijacking.

Most of the aforementioned studies rely on GHArchive [39]
to download repositories from GitHub and extract third-
party actions using the uses: syntax from workflow files.
In contrast, our work focuses on a longitudinal analysis of
GitHub Actions directly collected from the GitHub Actions
Marketplace. This approach enables us to observe trends over

time and analyze additional security dimensions not previously
explored.

B. Security Threats from Remote References and Domains

Remote references refer to embedded URLs or IP addresses
within development ecosystems, such as websites, email links,
source code repositories, or configuration files. [17], [40]-
[43]. These references can be abused when they expire or
become inactive, allowing attackers to re-register and control
them without the user’s awareness—undermining the implicit
trust placed in these external endpoints.

Typosquatting is an attack technique that exploits human er-
rors in typing, where malicious actors register slight variations
of legitimate names [44], [45]. Agten et al. [18] conducted a
longitudinal study of typosquatting abuse across the 500 most
popular websites over a seven-month period, demonstrating
its widespread impact. Blog posts [46]-[48] have previously
described case studies involving typosquatting in the world of
GitHub actions but, to our knowledge, no systematic analysis
has been conducted before.

Another related issue is domain parking, where unused
or expired domains are monetized through advertisements or
resale using domain parking services [21], [49], [50]. While
this practice may appear benign, parked domains still represent
a security concern since they opportunistically answer all
requests sent to them and have been historically associated
with malvertising.

Despite the importance of these issues, prior to our work,
there had been no prior systematic study of remote reference
abuse (including typosquatting and domain parking) in the
context of GitHub Actions.

VI. CONCLUSION

In this paper, we presented a longitudinal analysis of the
GitHub Actions marketplace, a large ecosystem of reusable
CI/CD workflows that developers can integrate in their GitHub
repositories. Over a four-month longitudinal study, we col-
lected more than 23,757 actions, observing the steady increase
of actions that developers make available for others to use.

Despite this growth, security best practices, such as full-
length commit SHA pinning and creator verification, remain
underutilized, even though they are recommended in GitHub’s
security hardening guidelines. Next to quantifying the lack of
best practices, we also investigated novel security risks includ-
ing typosquatting actions and the threats of remote references
in the context of GitHub actions. Namely, we identified 25
typosquatting action repositories that cloned or forked popular
actions to capitalize on typos that developers make when
attempting to use an action from the marketplace. Furthermore,
remote references — such as URLs and IP addresses — are
widely embedded in GitHub Actions. We identified almost
10 million URLs embedded in GitHub actions repositories,
with 732 domains that could not be resolved, the majority
of which could be immediately re-registered by attackers to
serve malicious content and perform supply-chain attacks.
These types of dangling remote references are particularly

problematic in the context of GitHub actions since attackers
can exploit them without the need to commit new code on
the affected repo, thereby bypassing the protections offered
by SHA pinning.

Our results indicate that security practices are not consis-
tently followed in the GitHub Actions ecosystem, increasing

the

potential for exploitation. Moreover, additional attack

vectors and areas — such as third-party dependency validation
and behavioral analysis of reused actions — warrant further
research. We hope this work provides insights into the evolving
landscape of GitHub Actions and raises awareness about its
associated security challenges. GitHub actions are first-class
citizens in the open-source software ecosystem and warrant
the level of scrutiny applied to regular code repositories.

ACKNOWLEDGMENTS

We thank our shepherd and the reviewers for their valuable
feedback. This work was supported by the Office of Naval
Research (ONR) under grant N0O0014-24-1-2193, as well as
by the National Science Foundation (NSF) under grants CNS-
1941617 and CNS-2211575.

(1]
2

—

[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

REFERENCES

C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “Devops,” IEEE
software, vol. 33, no. 3, pp. 94-100, 2016.

Jenkins. (2025, Jan.) Jenkins. [Online]. Available: https://www.jenkins.
io/.

GitLab. (2025, Jan.) Gitlab ci. [Online]. Available: https://docs.gitlab.
com/ci/.

GitHub. (2025, Jan.) Github actions. [Online]. Available: https://github.
com/features/actions.

I. Koishybayev, A. Nahapetyan, R. Zachariah, S. Muralee, B. Reaves,
A. Kapravelos, and A. Machiry, “Characterizing the security of github
{CI} workflows,” in 31st USENIX Security Symposium (USENIX Secu-
rity 22), 2022, pp. 2747-2763.

S. Muralee, I. Koishybayev, A. Nahapetyan, G. Tystahl, B. Reaves,
A. Bianchi, W. Enck, A. Kapravelos, and A. Machiry, “{ARGUS}: A
framework for staged static taint analysis of {GitHub} workflows and
actions,” in 32nd USENIX Security Symposium (USENIX Security 23),
2023, pp. 6983-7000.

GitHub. (2025, Jan.) Github marketplace. [Online]. Available: https://
github.com/marketplace?type=actions.

V. Sharma. (2025, Mar.) Harden-Runner detec-
tion: Tj-actions/changed-files action is compromised.
[Online]. Available: https://www.stepsecurity.io/blog/

harden-runner-detection-tj-actions-changed- files-action-is-compromised.

R. McCarthy. (2025, Mar.) GitHub Action supply chain attack:
Reviewdog/action-setup. [Online]. Available: https://www.wiz.io/blog/
new-github-action-supply-chain-attack-reviewdog-action-setup.

0. Gil, A. Hahami, A. Greenholts, and Y. Avital. (2025, Mar.) Github
actions supply chain attack: A targeted attack on coinbase expanded
to the widespread tj-actions/changed-files incident: Threat assessment
(updated 3/21). [Online]. Available: https://unit42.paloaltonetworks.com/
github-actions-supply-chain-attack/.

Microsoft. (2025, July.) Identify the components of github actions.
[Online]. Available: https://learn.microsoft.com/en-us/training/modules/
github-actions-automate-tasks/2b-identify-components-workflow.
GitHub. (2025, July.) About workflows. [Online]. Available:
https://docs.github.com/en/actions/concepts/workflows-and-actions/
about-workflows.

GitHub . (2025, July.) Using jobs in a workflow. [Online]. Available:
https://docs.github.com/en/actions/how- tos/writing- workflows/
choosing-what-your-workflow-does/using-jobs-in-a-workflow.

GitHub. (2025, July.) Workflow syntax for github actions.
[Online]. Available: https://docs.github.com/en/actions/reference/
workflow-syntax-for- github-actions#jobsjob_idsteps.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

(35]

[36]

GitHub (2025, July.) Understanding github actions.
[Online]. Available: https://docs.github.com/en/actions/get-started/
understanding- github-actions#actions.

GitHub. (2025, July.) Creating an action metadata file.
[Online]. Available: https://docs.github.com/en/actions/tutorials/

creating-a-javascript-action#creating- an-action- metadata-file.

J. So, N. Miramirkhani, M. Ferdman, and N. Nikiforakis, “Domains
do change their spots: Quantifying potential abuse of residual trust,”
in IEEE Symposium on Security and Privacy (SP). 1EEE, 2022, pp.
2130-2144.

P. Agten, W. Joosen, F. Piessens, and N. Nikiforakis, “Seven months’
worth of mistakes: A longitudinal study of typosquatting abuse,” in
Proceedings of the 22nd Network and Distributed System Security
Symposium (NDSS 2015). Internet Society, 2015.

Y.-M. Wang, D. Beck, J. Wang, C. Verbowski, and B. Daniels, “Strider
typo-patrol: Discovery and analysis of systematic typo-squatting.”
SRUTI, vol. 6, no. 31-36, pp. 2-2, 2006.

Github. (2025, Feb.) Deleting your personal account. [Online].
Available: https://docs.github.com/en/account-and-profile/
setting-up-and-managing- your-personal-account-on-github/
managing-your-personal-account/deleting- your-personal-account.

J. Zirngibl, S. Deusch, P. Sattler, J. Aulbach, G. Carle, and M. Jonker,
“Domain parking: Largely present, rarely considered!” in TMA, 2022.
GitHub. (2025, July.) About badges in github
marketplace. [Online]. Available: https://docs.
github.com/en/actions/how-tos/sharing-automations/
creating-actions/publishing-actions-in-github-marketplace#
about-badges-in-github-marketplace.

M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Small world
with high risks: A study of security threats in the npm ecosystem,” in
28th USENIX Security Symposium (USENIX Security 19). Santa Clara,
CA: USENIX Association, Aug. 2019, pp. 995-1010.

Actions. (2025, July.) Typescript-action. [Online]. Available: https://
github.com/actions/typescript-action.

Github. (2025, Feb.) Security hardening for github
actions. [Online]. Available: https://docs.github.com/
en/actions/security-for- github-actions/security- guides/
security-hardening-for-github-actions.

GitHub. (2025, July.) Using third-party actions. [Online]. Available:
https://docs.github.com/en/actions/how-tos/security- for- github-actions/
security- guides/security-hardening- for- github-actions#
using-third-party-actions.

N. Nikiforakis, S. Van Acker, W. Meert, L. Desmet, F. Piessens, and
W. Joosen, “Bitsquatting: Exploiting bit-flips for fun, or profit?” in
Proceedings of the 22nd international conference on World Wide Web,
2013, pp. 989-998.

N. Nikiforakis, M. Balduzzi, L. Desmet, F. Piessens, and W. Joosen,
“Soundsquatting: Uncovering the use of homophones in domain squat-
ting,” in International Conference on Information Security. Springer,
2014, pp. 291-308.

AWS. (2025, Jan.) Aws for github actions - typosquat. [Online]. Avail-
able: https://github.com/aws-action.

Oxdead8ead. (2025, Jan.) Oxdead8ead/gitfraud. [Online]. Available:
https://github.com/Oxdead8ead/gitfraud.

A. Decan, T. Mens, P. R. Mazrae, and M. Golzadeh, “On the use of
github actions in software development repositories,” in IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2022, pp. 235-245.

A. Decan, T. Mens, and H. O. Delicheh, “On the outdatedness of
workflows in the github actions ecosystem,” Journal of Systems and
Software, vol. 206, p. 111827, 2023.

H. O. Delicheh, A. Decan, and T. Mens, “A preliminary study of github
actions dependencies.” in SATToSE, 2023, pp. 66-77.

G. Benedetti, L. Verderame, and A. Merlo, “Automatic security assess-
ment of github actions workflows,” in Proceedings of the ACM Workshop
on Software Supply Chain Offensive Research and Ecosystem Defenses,
2022, pp. 37-45.

GitHub. (2025, Feb.) Actions queries for codeql analysis. [Online].
Available: https://docs.github.com/en/code- security/code-scanning/
managing-your-code-scanning-configuration/actions- built-in-queries.
Y. Gu, L. Ying, H. Chai, C. Qiao, H. Duan, and X. Gao, “Continuous
intrusion: Characterizing the security of continuous integration services,”
in IEEE Symposium on Security and Privacy (SP). IEEE, 2023, pp.
1561-1577.

https://www.jenkins.io/
https://www.jenkins.io/
https://docs.gitlab.com/ci/
https://docs.gitlab.com/ci/
https://github.com/features/actions
https://github.com/features/actions
https://github.com/marketplace?type=actions
https://github.com/marketplace?type=actions
https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised
https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised
https://www.wiz.io/blog/new-github-action-supply-chain-attack-reviewdog-action-setup
https://www.wiz.io/blog/new-github-action-supply-chain-attack-reviewdog-action-setup
https://unit42.paloaltonetworks.com/github-actions-supply-chain-attack/
https://unit42.paloaltonetworks.com/github-actions-supply-chain-attack/
https://learn.microsoft.com/en-us/training/modules/github-actions-automate-tasks/2b-identify-components-workflow
https://learn.microsoft.com/en-us/training/modules/github-actions-automate-tasks/2b-identify-components-workflow
https://docs.github.com/en/actions/concepts/workflows-and-actions/about-workflows
https://docs.github.com/en/actions/concepts/workflows-and-actions/about-workflows
https://docs.github.com/en/actions/how-tos/writing-workflows/choosing-what-your-workflow-does/using-jobs-in-a-workflow
https://docs.github.com/en/actions/how-tos/writing-workflows/choosing-what-your-workflow-does/using-jobs-in-a-workflow
https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions#jobsjob_idsteps
https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions#jobsjob_idsteps
https://docs.github.com/en/actions/get-started/understanding-github-actions#actions
https://docs.github.com/en/actions/get-started/understanding-github-actions#actions
https://docs.github.com/en/actions/tutorials/creating-a-javascript-action#creating-an-action-metadata-file
https://docs.github.com/en/actions/tutorials/creating-a-javascript-action#creating-an-action-metadata-file
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-your-personal-account/deleting-your-personal-account
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-your-personal-account/deleting-your-personal-account
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-your-personal-account/deleting-your-personal-account
https://docs.github.com/en/actions/how-tos/sharing-automations/creating-actions/publishing-actions-in-github-marketplace#about-badges-in-github-marketplace
https://docs.github.com/en/actions/how-tos/sharing-automations/creating-actions/publishing-actions-in-github-marketplace#about-badges-in-github-marketplace
https://docs.github.com/en/actions/how-tos/sharing-automations/creating-actions/publishing-actions-in-github-marketplace#about-badges-in-github-marketplace
https://docs.github.com/en/actions/how-tos/sharing-automations/creating-actions/publishing-actions-in-github-marketplace#about-badges-in-github-marketplace
https://github.com/actions/typescript-action
https://github.com/actions/typescript-action
https://docs.github.com/en/actions/security-for-github-actions/security-guides/security-hardening-for-github-actions
https://docs.github.com/en/actions/security-for-github-actions/security-guides/security-hardening-for-github-actions
https://docs.github.com/en/actions/security-for-github-actions/security-guides/security-hardening-for-github-actions
https://docs.github.com/en/actions/how-tos/security-for-github-actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/how-tos/security-for-github-actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/how-tos/security-for-github-actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://github.com/aws-action
https://github.com/0xdead8ead/gitfraud
https://docs.github.com/en/code-security/code-scanning/managing-your-code-scanning-configuration/actions-built-in-queries
https://docs.github.com/en/code-security/code-scanning/managing-your-code-scanning-configuration/actions-built-in-queries

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Y. Gu, L. Ying, H. Chai, Y. Pu, H. Duan, and X. Gao, “More haste, less
speed: Cache related security threats in continuous integration services,”
in IEEE Symposium on Security and Privacy (SP). 1EEE, 2024, pp.
1179-1197.

X. Li, Y. Gu, C. Qiao, Z. Zhang, D. Liu, L. Ying, H. Duan, and X. Gao,
“Toward understanding the security of plugins in continuous integration
services,” in Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security, 2024, pp. 482-496.

GH Archive. (2025, Jan.) Gh archive. [Online]. Available: https://www.
gharchive.org/.

C. Lever, R. Walls, Y. Nadji, D. Dagon, P. McDaniel, and M. Anton-
akakis, “Domain-z: 28 registrations later measuring the exploitation of
residual trust in domains,” in IEEE symposium on security and privacy
(SP). IEEE, 2016, pp. 691-706.

T. Moore and R. Clayton, “The ghosts of banking past: Empirical
analysis of closed bank websites,” in International Conference on
Financial Cryptography and Data Security. Springer, 2014, pp. 33-48.
D. Gruss, M. Schwarz, M. Wiibbeling, S. Guggi, T. Malderle, S. More,
and M. Lipp, “Use-after-freemail: Generalizing the use-after-free prob-
lem and applying it to email services,” in Proceedings of the Asia
Conference on Computer and Communications Security, 2018, pp. 297—
311.

E. Pauley, R. Sheatsley, B. Hoak, Q. Burke, Y. Beugin, and P. McDaniel,
“Measuring and mitigating the risk of ip reuse on public clouds,” in [EEE
Symposium on Security and Privacy (SP). 1EEE, 2022, pp. 558-575.
S. E. Coull, A. M. White, T.-F. Yen, F. Monrose, and M. K. Reiter,
“Understanding domain registration abuses,” Computers & security,
vol. 31, no. 7, pp. 806-815, 2012.

J. Szurdi, B. Kocso, G. Cseh, J. Spring, M. Felegyhazi, and C. Kanich,
“The long {“Taile”} of typosquatting domain names,” in 23rd USENIX
Security Symposium (USENIX Security 14), 2014, pp. 191-206.

Ofir Yakobi. (2025, July.) Watch the typo: Our poc exploit for ty-
posquatting in github actions. [Online]. Available: https://orca.security/
resources/blog/typosquatting-in- github-actions/.

Ravie Lakshmanan. (2025, July.) Github actions vulnerable to typosquat-
ting, exposing developers to hidden malicious code. [Online]. Available:
https://thehackernews.com/2024/09/github-actions- vulnerable-to.html.

Lucian Constantin. (2025, July.) Github actions typosquat-
ting: A high-impact supply chain attack-in-waiting. [On-
line]. Available: https://www.csoonline.com/article/3506897/

github-actions-typosquatting-a-high-impact-supply-chain-attack-in- waiting.

html.

S. Alrwais, K. Yuan, E. Alowaisheq, Z. Li, and X. Wang, “Understanding
the dark side of domain parking,” in 23rd USENIX Security Symposium
(USENIX Security 14), 2014, pp. 207-222.

T. Vissers, W. Joosen, and N. Nikiforakis, “Parking sensors: Analyzing
and detecting parked domains,” in Proceedings of the 22nd Network and
Distributed System Security Symposium (NDSS 2015). Internet Society,
2015, pp. 53-53.

APPENDIX A
ADDITIONAL RESULTS

TABLE 1V: Distribution of GitHub Actions by Category

Category ‘ Page
API management 26
Backup Utilities 10
Chat 24
Code quality 105
Code review 97
Container CI 74
Continuous integration 450
Dependency management 60
Deployment 272
Deployment Protection Rules 2
Game CI 12
GitHub Sponsors
IDEs 3
Learning 12
Localization
Mobile 8
Mobile CI 15
Monitoring 26
Project management 70
Publishing 138
Security 72
Support 17
Testing 98
Utilities 401

https://www.gharchive.org/
https://www.gharchive.org/
https://orca.security/resources/blog/typosquatting-in-github-actions/
https://orca.security/resources/blog/typosquatting-in-github-actions/
https://thehackernews.com/2024/09/github-actions-vulnerable-to.html
https://www.csoonline.com/article/3506897/github-actions-typosquatting-a-high-impact-supply-chain-attack-in-waiting.html
https://www.csoonline.com/article/3506897/github-actions-typosquatting-a-high-impact-supply-chain-attack-in-waiting.html
https://www.csoonline.com/article/3506897/github-actions-typosquatting-a-high-impact-supply-chain-attack-in-waiting.html

	Introduction
	background
	Github Actions
	Github Marketplace

	methodology
	Crawling System
	Github Actions Marketplace Analysis

	Results
	GitHub Marketplace Statistics
	Security Analysis
	Remote References
	Removed actions and malware

	related work
	Github actions analysis
	Security Threats from Remote References and Domains

	conclusion
	References
	Appendix A: Additional Results

