
TabShots: Client-Side Detection of Tabnabbing Attacks

Philippe De Ryck, Nick Nikiforakis, Lieven Desmet, Wouter Joosen
iMinds-Distrinet, KU Leuven, 3001 Leuven, Belgium

Philippe.DeRyck@cs.kuleuven.be

ABSTRACT
As the web grows larger and larger and as the browser be-
comes the vehicle-of-choice for delivering many applications
of daily use, the security and privacy of web users is under
constant attack. Phishing is as prevalent as ever, with anti-
phishing communities reporting thousands of new phishing
campaigns each month. In 2010, tabnabbing, a variation
of phishing, was introduced. In a tabnabbing attack, an
innocuous-looking page, opened in a browser tab, disguises
itself as the login page of a popular web application, when
the user’s focus is on a different tab. The attack exploits the
trust of users for already opened pages and the user habit
of long-lived browser tabs.

To combat this recent attack, we propose TabShots. Tab-
Shots is a browser extension that helps browsers and users to
remember what each tab looked like, before the user changed
tabs. Our system compares the appearance of each tab and
highlights the parts that were changed, allowing the user to
distinguish between legitimate changes and malicious mas-
querading. Using an experimental evaluation on the most
popular sites of the Internet, we show that TabShots has
no impact on 78% of these sites, and very little on another
19%. Thereby, TabShots effectively protects users against
tabnabbing attacks without affecting their browsing habits
and without breaking legitimate popular sites.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection; H.3.5 [Information
Storage and Retrieval]: Web-based services

General Terms
Security

Keywords
Tabnabbing, phishing, client-side protection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIA CCS’13, May 8–10, 2013, Hangzhou, China.
Copyright 2013 ACM 978-1-4503-1767-2/13/05 ...$15.00.

1. INTRODUCTION
Phishing, the process that involves an attacker tricking

users into willingly surrendering their credentials, is as preva-
lent as ever. PhishTank, a volunteer-driven site for tracking
phishing pages [13], in their latest publicly available report,
reported a total of 22,851 valid phishing attempts just for
July of 2012. In these attacks, an attacker targets the user
and capitalizes on a user’s inability of distinguishing a le-
gitimate page from one that looks legitimate but is actually
fraudulent. Phishing attacks can be conducted both on large
and small scale, depending on an attacker’s objectives. The
latest publicized attack against the White House, involved
the use of “spear phishing”, a type of phishing that is tar-
geting highly specific individuals and companies [9].

In 2010, Aza Raskin presented a new type of phishing at-
tack which he called “tabnabbing” [14]. In tabnabbing, the
user is lured into visiting a malicious site, which however
looks innocuous. If a user keeps the attacker’s site open and
uses another tab of her browser to browse to a different web-
site, the tabnabbing page takes advantage of the user’s lack
of focus (accessible through JavaScript as window.onBlur)
to change its appearance (page title, favicon and page con-
tent) to look identical to the login screen of a popular site.
According to Raskin, when a user returns back to the open
tab, she has no reason to re-inspect the URL of the site
rendered in it, since she already did that in the past. This
type of phishing separates the visit of a site from the actual
phishing attack and could, in theory, even trick users who
would not fall victim to traditional phishing attacks.

In this paper we present TabShots, a countermeasure for
detecting changes to a site when its tab is out of focus. Tab-
Shots allows a browser to “remember” what the tab looked
like before it lost focus, and compare it with the appear-
ance after regaining focus. More precisely, whenever a tab
is fully loaded, TabShots records the favicon1 and captures
a screenshot of the visible tab. Whenever a user revisits a
tab, a new capture is taken and compared to the previously
stored one. If any changes are detected, the user is warned
by adding a visual overlay on the current tab, showing ex-
actly the content that was changed, assisting the user in
distinguishing between legitimate changes and tabnabbing
attacks. Our system is based on the user’s visual percep-
tion of a site and not the HTML representation of it, allow-
ing TabShots to withstand attacks that straightforwardly
circumvent previously proposed, tabnabbing-detection sys-
tems. We implement TabShots as a Chrome extension and
evaluate it against the top 1000 Alexa sites, showing that

1The small icon displayed in the tab’s title space

Figure 1: A seemingly innocuous page on the left performs a tabhabbing attack once the user switches focus,
resulting in the page on the right [14].

78% of sites fall within a safe threshold of less than 5%
changes, and an additional 19% fall within the threshold of
less than 40% of changes. This means that TabShots effec-
tively protects against tabnabbing attacks, without hinder-
ing a user’s day-to-day browsing habits.

The rest of this paper is structured as follows: In Sec-
tion 2 we first explore the original tabnabbing attack and
then discuss possible variations taking advantages of the dif-
ferent implementations of the tabbing mechanism in popular
browsers. In Section 3 we describe in detail the workings of
TabShots and our implementation choices. In Section 4 we
evaluate TabShots on security, performance and compati-
bility against the Alexa top 1000. In Section 5, we briefly
describe how TabShots could be deployed on the server-side
to create tabnabbing blacklists and expand protection to all
users. In Section 6 we discuss the related work and conclude
in Section 7.

2. BACKGROUND

2.1 Anatomy of a tabnabbing attack
Tabnabbing relies on the tab mechanism, which is com-

mon in all modern browsers. Users visit websites, but in-
stead of navigating away from that website when they want
to consume the content of a different website, they open a
new tab, and use that tab instead. The old site remains
open in the old tab, and many tabs can accumulate over
time in a user’s browser. A 2009 study of user’s browsing
habits revealed that users have an average of 3.2 tabs open
in their browsers [6]. We expect that today, this number
has increased, due to the sustained popularity of social net-
working sites and web applications that constantly update
a user’s page with new information. The latest features in-
troduced by browsers attest to this popularity of multiple
open tabs, since they give the user the ability to “pin” any
given tab to the browser and treat it as a web application.

The steps of a tabnabbing attack as presented by Raskin [14]
are the following:

1. An attacker convinces the user to visit a website under
his control. This website appears to be an innocuous

site that is not trying to fool the user into giving up
her credentials. What the attacker must do, is con-
vince the user to keep this tab open, and browse to
a different website. This is easily achieved in a wide
range of ways, for instance by providing an article that
is both very interesting, but also too long to read in
a single go, or some sort of free product that will be
available in the near future. Directing the user away
from the attacker’s site is straightforward by adding
the target="_blank" attribute to interesting hyper-
links, so that new links automatically open in a new
tab or window.

2. JavaScript code running in the attacker’s website is
triggered when the current window has lost focus, by
registering to the window.onBlur event handler.

3. The user keeps the attacker’s website open and uses
other tabs to surf the Internet.

4. The attacker realizes that his window is currently not
in focus, and, after a possible delay of a few seconds
in order to make sure that the user is busy consum-
ing other content, changes the title, favicon and layout
of the page to mimic the login screen of a web appli-
cation, for instance the user’s web mail or social net-
working site. The attacker can choose a default web
application (like Gmail) under the assumption that
most users have a Gmail account or can combine the
tabnabbing attack with a history-revealing attack [8,
21], and present the login of a web application that he
knows is visited in the past by the user. This process
is also shown in Figure 1

5. At some point in the future, the user recognizes a tab
with a familiar favicon (e.g. GMail) and unwittingly
opens the attacker-controlled tab. At this point, the
user is no longer checking the URL of the website,
since it is a website that she opened in the past and
thus “trusted”. Given a convincing login screen, the
user proceeds into typing her credentials in the given
forms which are then transferred to the attacker, thus
completing the tabnabbing attack.

Figure 2: Chrome keeps all tabs visible but shrinks
the space alloted to each tab

Figure 3: After a number of tabs, Firefox hides older
tabs in order to make space for the new ones

The main difference between tabnabbing and traditional
phishing attacks is that the fake login form is decoupled
from the visit of the malicious website. Thus, users who
have been trained to spot phishing attacks by immediately
checking the URL of the page they open, may fall victim to
this variant of phishing. This “delayed maliciousness” can
also be used to evade detection by any automated honey-
clients which may be autonomously searching for phishing
pages based on various heuristics [22]. If the honeyclient
does not stay for long enough on the malicious page, or does
not trigger the window.onBlur event, then the actual phish-
ing page will never be shown and the attacker can avoid
detection.

2.2 Overly Specific Detection
In the previous section, we described the anatomy of a tab-

nabbing attack, exactly as it was first presented by Raskin in
2010 [14]. According to Raskin, an attacker needs to change
three things in order to conduct a successful tabnabbing at-
tack: the page’s title, the page’s favicon and the page itself.
Accordingly, currently known countermeasures depend on
changes in these three properties, or include even more spe-
cific tabnabbing characteristics (more details in Section 6).
This overly specific detection gives the attacker more flexi-
bility to avoid detection.

One example of such flexibility is carrying out a tab-
nabbing attack without changing the title of the tab, sim-
ply by taking advantage of the tabbing behavior within a
browser. While conducting our research, we noticed that
different browsers behave differently when a user has many
open tabs in one window. Figures 2 and 3 show how Chrome
and Firefox handle many open tabs. Chrome, starts resiz-
ing the label of each tab, in an effort to keep all tabs vis-
ible. Here, one can notice that most of the title of each
tab is hidden while favicons remain visible. On the other
hand, Firefox starts hiding tabs which the user can access
by clicking on the left arrow (circled in Figure 3). More-
over, Firefox preserves the title bar above the tabs, which
Chrome dispenses in an effort to maximize the amount of
space available for HTML.

In the case of Chrome, assuming that a user has many
tabs open, the attacker can avoid the title change altogether,
since it will likely not be visible to the user anyway.

In the next section, we present TabShots, which detects
tabnabbing attacks using visual comparison. Since Tab-
Shots does not depend on fine-grained detection properties,
we leave no room for an attacker to sneak through.

Figure 4: The overlay generated by TabShots for
the attack from Figure 1. Here, only certain parts
of the white background remained unchanged.

3. TabShots PROTOTYPE

3.1 Core idea
As discussed before, a successful tabnabbing attack de-

pends on the user visiting a malicious page, shifting focus
to a different tab and returning at some point, after which
the malicious page has changed its looks to resemble a pop-
ular application’s login form. In itself, a tabnabbing attack
is extremely obvious to detect, since a convincing phishing
page will differ from the previous content. Detection is how-
ever complicated by the tab being out of focus, and the user
placing some trust in previously opened and visited tabs.

TabShots takes advantage of these obvious changes needed
by a successful tabnabbing attack, by remembering what a
tab looks like before it loses focus, and comparing that to
what it looks like when it regains focus. Any changes that
happened in the background will be detected, and commu-
nicated to the user by means of a colored overlay. This
allows the user to decide for herself whether the changes are
innocent (e.g. an incoming chat message) or malicious mas-
querading (e.g. a login form and GMail logo popping up).
Figure 4 shows how TabShots detects the tabnabbing at-
tack from Figure 1. This non-intrusive behavior guarantees
compatibility with all existing sites, since changes are only
highlighted and not blocked or prevented.

Our approach is purely built on the visible content of a
tab, exactly as the user perceives it. This yields several
advantages compared to techniques analyzing the structure
and contents of a page. TabShots is invulnerable to HTML,
CSS or JavaScript trickery, aimed at circumventing tab-
nabbing countermeasures (see Section 6), scrolling attacks
or other obfuscation attacks.

3.2 Implementation details
TabShots is currently implemented as an extension for

Google Chrome2, but could easily be ported to other browsers
supporting an extension system, provided they offer a reli-
able way to capture screenshots of tabs.

2A prototype of TabShots is available at http://people.cs.
kuleuven.be/~philippe.deryck/papers/asiaccs2013/

In the following paragraphs, we discuss several implemen-
tation techniques and strategies for the major components
of TabShots.

Capturing Tabs.
TabShots records the favicon and captures screenshots of

the currently focused tab at regular intervals, keeping track
of the latest version. This latest snapshot will be the ba-
sis for comparison when a tab regains focus. Capturing a
screenshot of a tab in Google Chrome is trivial, since the
browser offers an API call to capture the currently visible
tab of a window. Capture data is stored as a data URL [10].

Capturing snapshots of a tab at regular intervals is a delib-
erate design decision, allowing TabShots to handle changes
that happen in a tab while it is in focus. These changes typi-
cally occur in highly dynamic applications, such as Facebook
or GMail, which often use AJAX techniques to dynamically
update the contents of their pages. Ideally, a tab could be
captured right before it loses focus, but since Google Chrome
does not offer such an event, this feature cannot be imple-
mented without a severe usability and performance penalty.

Comparing Tab Snapshots.
When a tab regains focus, TabShots needs to compare

the current snapshot data with the stored data and detect
any differences. Favicons are compared by source, and the
screenshots are compared visually. Each screenshot is di-
vided in a raster of fixed-size tiles (e.g., 10x10 pixels). Each
tile is compared to its counterpart in the stored snapshot
data. If the tiles do not match exactly, the area covered
by it is marked as changed. The rastering and comparison
algorithms are implemented using the recently introduced
HTML5 canvas element, which offers extensive image ma-
nipulation capabilities.

One potential disadvantage of the screenshot analysis is
the difficulty to detect a small change in a page that results
in a visible shifting of contents (e.g. adding one message
in front of a list). Such false positives may be addressed
by a smarter comparison algorithm, that is able to detect
movements within a screenshot.

The evaluation section (Section 4) discusses the chosen tile
size and performance of the comparison algorithm in more
detail.

Highlighting Differences.
Once the differences for a focused tab are calculated, Tab-

Shots injects an overlay into the page. This overlay is com-
pletely transparent, except for the differences, which are
shown in semi-transparent red. The overlay is positioned in
the top left corner and covers the entire visible part of the
site. Setting the CSS directive pointer-events: none ensures
that the overlay does not cause any unwanted interactions,
and allows mouse and keyboard events to “fall through” the
overlay onto the original content.

In order to detect a malicious page from actively trying to
remove the overlay from the DOM, we implement a mutation
event listener that is triggered when an element is removed.
It then checks whether the overlay is still present and if not,
immediately warns the user of this active malicious behavior.

Security Indicator.
In addition to the overlay of the changes on the current

page, TabShots also has a browser toolbar icon, indicating
the current status of the site. The icon’s background color
indicates how much of the site has changed, ranging from
almost nothing (< 10%, shown as green), over moderate
(< 40%, shown as yellow) to high (> 40%, shown as red).
Clicking on the icon shows a miniature view of the current
tab combined with the overlay of detected changes. Having
a security indicator as part of the browser environment en-
sures that even if a malicious page somehow manipulates or
removes the overlay, the user still has a trustworthy notifi-
cation mechanism.

The current notification mechanism is quite subtle, but
follows other commonly accepted and implemented notifica-
tion mechanisms, such as displaying a padlock when using
a secure connection. If desired, the notification mechanism
can be easily extended to something more visible, such as
the warnings given in case of an invalid SSL certificate.

3.3 Alternative Design Decisions
During the design and development of TabShots, we con-

sidered different paths and options, leading to the outcome
described here. For completion, we want to discuss two top-
ics that drove the design and workings of TabShots in a bit
more detail.

JavaScript-based Detection.
Instead of visually comparing screenshots, we might at-

tempt to detect the malicious JavaScript code actually car-
rying out the tabnabbing attack. This is not a trivial task,
since JavaScript’s dynamic nature makes script analysis dif-
ficult. Furthermore, there are a multitude of ways to actu-
ally implement a tabnabbing attack. The attack example
discussed earlier uses the window.onBlur event, but a tab-
nabbing attack is certainly not limited to only this event.
Similarly, there are numerous ways to actually change the
displayed content, ranging from the use of JavaScript to ex-
tensive use of available CSS techniques.

Regularly Capturing Tabs.
Currently, TabShots makes a capture of a tab at regu-

lar intervals, so it can compare the capture taken when the
user returns to a fairly recent capture from before. Ideally,
we would make a capture when the user leaves, and a cap-
ture when the user returns. Unfortunately, Chrome does
not trigger an event when a user leaves a tab, only when a
user focuses a new tab. At the moment this event is received,
the new tab is already displayed. To take a screenshot of the
tab that was just left, TabShots has to switch it back into
display, take a capture and switch back to the new tab. Un-
fortunately, this cannot be implemented without very briefly
revealing this process visually to the user, with a degraded
user experience as a consequence.

4. EVALUATION
As discussed before, a tabnabbing attack takes place when

a user leaves a innocuous-looking malicious tab unfocused.
Tabnabbing is different from traditional phishing, since it
exploits trust placed in a previously opened tab, whereas
phishing simply tries to mislead the user.

Our evaluation of TabShots consists of three parts. First
we discuss how TabShots effectively protects against all tab-
nabbing attacks. Second, we discuss the performance impact

Capture

Cut base

Cut capture

Compare

Show result

107ms 141ms 231ms 284ms0ms

TabShots code Browser APIs

Figure 5: Breakdown of the average performance
with a resolution of 1366x768.

of TabShots. The third part elaborates on the setup and re-
sults of an experimental compatibility study using Alexa’s
1000 most popular sites.

4.1 Security
The security guarantees offered by TabShots follow di-

rectly from its design. We recapitulate the three most im-
portant security properties here: (i) zero false negatives, (ii)
user-friendly and clear overlay and (iii) secure toolbar indi-
cator.

TabShots can not miss a tabnabbing attack by design,
since it visually captures screenshots from a tab and com-
pares them. In order for a tabnabbing attack to occur unde-
tected, it has to ensure that the screenshots before and after
losing focus are identical, meaning the page did not change
while out of focus. This case is considered a classic phishing
attack, and not a specific tabnabbing attack.

Second, TabShots injects an overlay of the focused tab, in-
dicating which parts of the page have changed since its last
focus. Using mutation events, TabShots detects if a mali-
cious page actively tries to remove the overlay, and notifies
the user with a strong security message.

Third, TabShots also adds an icon to the browser toolbar.
Using a three-level color indication system, it notifies the
user of how much a tab did change. The strength of this
toolbar icon is that it runs in the context of the extension,
and is completely out of reach to any page-specific code.
This effectively prevents any manipulation by a malicious
page.

4.2 Performance
In order to prevent tabnabbing attacks, TabShots must

be capable of warning the user of any changes before she
enters any sensitive information. Furthermore, since Tab-
Shots’s algorithm is executed when a user switches tabs, it
is crucial that there is no noticeable performance impact.
The performance measurements and analysis of the main
algorithm, discussed below, show that TabShots succeeds in
quickly processing the captures and warning the user of any
changes that occurred.

One important advantage of TabShots is that it fully op-
erates in the background, without any blocking impact on
any browser action or processing. When a user switches
tabs, TabShots will perform the following steps:

1. Capture a screenshot of the newly focused tab

2. Cut the previously captured image of this tab (before
it lost focus) into tiles

3. Cut the newly acquired screenshot into tiles

4. Compare the tiles of both screenshots and mark the
differences

5. Inject the calculated overlay into the page and update
the TabShots icon

For a browsing window with a resolution of 1366x768, the
most common resolution at the time of this writing [18],
TabShots is capable of performing these steps within an av-
erage time of 284ms after receiving the browser event fired
by switching tabs. Fig. 5 shows a breakdown of this time
into the steps mentioned before. Note that of these 284ms,
160ms are consumed by browser APIs, which are out of our
control.

Currently, a large chunk of time is consumed by the com-
parison algorithm, which is a pixel-by-pixel comparison of
each tile. The time used by this algorithm is strongly corre-
lated to the number of changes within a page. If a difference
between tiles is detected at the first pixel, there is no need to
check the remaining pixels. Consequently, if a tabnabbing
attack occurs, a lot of changes will be detected and Tab-
Shots’s algorithm will perform even faster. Table 1 presents
the number of milliseconds spent on comparison on our test-
ing pages, where we use a div to change a certain percentage
of a page, clearly showing the correlation between amount
of changes and required processing time.

% changes ms spent on comparison
0 126
25 86
50 60
75 32
100 4

Table 1: Correlation between amount of changes on
a page and number of milliseconds consumed by the
comparison algorithm.

Overall, one can see that TabShots is efficient enough to
prevent tabnabbing attacks, before the user discloses her cre-
dentials to the phishing page and without a negative effect
on the user’s browsing experience. Moreover, if TabShots
was to be implemented directly within the browser instead
of through the browser’s extension APIs, we expect that its
overhead would be significantly lower.

4.3 Compatibility
Apart from the security guarantees offered by TabShots,

its compatibility with existing sites is another important
evaluation criterion. When using non-malicious web appli-
cations, the number of changes detected by TabShots, i.e.
false positives, should be limited, even though the user can
quickly determine whether a change is legitimate or not.

To determine the compatibility with current web applica-
tions, we ran TabShots on the top 1000 Alexa sites. Each
site was loaded in a separate tab, and captured before and
after it lost focus. These two captures were compared and
analyzed for the number of changed blocks. Through our
preliminary experimentation with TabShots, we discovered
that a 10x10 tile-size strikes the desired balance between
performance and precision. Smaller tiles would incur extra
overhead, since as the number of tiles increase, so do the
checks between the old versions and the new ones, without

Figure 6: Compatibility analysis of the visual com-
parison algorithm with Alexa’s top 1000 sites.

Domain % of changed tiles
facebook.com 0.38
google.com 0.00
youtube.com 4.05
yahoo.com 5.31
baidu.com 0.00
wikipedia.org 0.73
live.com 2.65
twitter.com 2.91
qq.com 6.00
amazon.com 2.57
blogspot.com 0.32
linkedin.com 0.26
taobao.com 0.49
google.co.in 0.00
yahoo.co.jp 4.13
sina.com.cn 1.24
msn.com 23.22
google.com.hk 0.00
google.de 0.00
bing.com 0.00

Table 2: Compatibility analysis of the Alexa top 20
sites

a distinguishable improvement in pin-pointing the modified
content.

Table 2 shows the results for the top 20 sites, and Fig. 6
shows a histogram of the entire top 1000, grouped by integer
percentage values. The results show that 78% of sites fall
within the safe threshold of less than 5% changed blocks,
meaning there are no compatibility issues here. About 19%
of sites have moderate changes, but still less than 40%. Man-
ual verification shows that these changes are mainly caused
by changing content such as image slideshows or dynamic ad-
vertisements. A typical example of an overlay of a dynamic
advertisement is shown in Fig. 9. Finally, 3% of sites has
more than 40% of changed blocks, which seem to be caused
by changing background graphics. Fig. 7 and 8 respectively
show the worst case scenario for the sites with moderate
changes (less than 40%) and sites with heavy changes (more
than 40%).

Note that even though certain sites have a high number
of changed blocks, TabShots never interferes with a page,
preventing any loss of functionality. If desired, a user can

Figure 9: Screenshot of a typical dynamic advertise-
ment being recognized by TabShots.

easily whitelist known trusted sites, to prevent needless over-
laying of changed content. Additionally, a future extension
of TabShots can incorporate a learning algorithm to iden-
tify dynamic parts of a site while the tab is in focus, which
reduces the number of false positives.

The automated analysis gives a good idea of the impact on
Alexa’s top 1000, but is unfortunately not able to cover the
authenticated parts of the sites. Therefore, we also tested
the impact of TabShots on the daily use of several highly
dynamic web applications, for example social networking
applications (e.g. Facebook, Twitter) and webmail clients
(e.g. GMail, Outlook Web Access). One noticeable effect is
that the addition of a single element can cause a shifting of
content within a page, which is currently flagged as a major
change by the comparison algorithm. In future work, we can
implement a comparison algorithm that detects such shifts
and only marks the newly added content as a change.

5. BLACKLISTING TABNABBING
In the previous section, we described in detail the idea

and implementation of TabShots. While this is sufficient
for the protection of a user who has installed our browser
extension, we deem it desirable to also protect users who are
using different browsers or have not installed TabShots. This
can be achieved through an optional server-side component
which can aggregate information sent by individual browsers
and, after validation, add the reported URLs in a blacklist.
This server-side component would be the logical next step,
to transition from a protection of a selected number of users
(those with TabShots installed) to a more global protection,
similar to Google’s SafeBrowsing list of malicious sites [15]
which is currently utilized by many modern browsers. In
the rest of this section, we describe the possible workings of
such a service.

In the stand-alone version of TabShots, once a user realizes
that she is being targetted by a tabnabbing attack, she is
instructed to simply navigate away from the malicious site
without entering any private information. With a server-
side component in place, the user can mark the current page
as a “tabnabbing attack” through the UI of our extension.

Figure 7: Before and after shots of americanexpress.com (#354), which has 38.93% of changed blocks, due to
a background image that took longer to load.

Figure 8: Before and after shots of mlb.com (#355), which has 97.31% of changed blocks, due to an overlay
that changed the intensity of the site to present an advertisement.

Once this happens, TabShots transfers to a server-side, data
aggregator the following information:

1. The URL of the current page

2. The image of the page before the user switched tabs

3. The image of the page after the user switched tabs

The server-side aggregator has the responsibility of receiv-
ing reports from multiple users, filtering-out false reports
and then adding the true positives on a blacklist. Filtering
is necessary to stop attackers who wish to harm the reputa-
tion of the TabShots blacklist, by submitting legitimate sites
that would then be automatically blocked. Our server-side
service operates as follows:

For every previously unreported URL received by a user
with TabShots installed, our service spawns an instrumented
browser which visits the reported URL and captures a screen-
shot. Assuming that the current page is indeed performing
tabnabbing, the malicious scripts will try to get information
about their “visibility” through the window.onBlur event.
Since our browsers are instrumented, we can trigger a win-

dow.onBlur event without requiring the actual presence of
extra tabs. In the same way, any callbacks that the script
registers using the setTimeout method, are immediately
triggered, i.e., the malicious code is tricked into performing
the tabnabbing attack, without the need of waiting. Once
the callbacks are executed, our system takes another snap-
shot of the resulting page. The set of screenshots captured
by the user is then compared with the set that was captured
by our system. To account for changes in the pages due
to advertisements and other legitimately-dynamic content,
the screenshots are accepted if either the server-generated
set is an identical copy of the user-generated one, or if they
match over a certain configurable threshold (i.e. everything
matches except certain dynamic areas).

Once the above process is complete, the URLs recognized
as true positives are then sent to a human analyst who will
verify that the resulting page is indeed a phishing page. A
human analyst is necessary since our system cannot reason
towards the maliciousness or legitimacy of the final changed
page. Note, that human-assisted phishing verification is cur-
rently one of the most successful approaches, e.g., Phish-
Tank [13], and its results are more trustworthy than any
automated phishing-detection solution. The URLs that are
marked as “tabnabbing”, can then be added to a blacklist
that browsers can subscribe to.

The users who report URLs that either never reach a hu-
man analyst (because the server-side screenshots did not
match the user-provided ones), or reached a human analyst
and were classified as “non-phishing” are logged, so that if
they are found to consistently submit false positives, our
system may adapt to ignore their future submissions.

Submitting screenshots to a third party service might be
considered privacy-sensitive, so we take care to address these
issues accordingly. Therefore, TabShots only submits a screen-
shot after explicit user approval. Additionally, the screen-
shot submission is only triggered after the user flagged a
tabnabbing attack, so it is very likely that the captured site
is malicious of nature, and does not contain any sensitive
information.

6. RELATED WORK
Raskin was the first to present the tabnabbing attack

in 2010 [14]. Others, presented variations of the attack,
for instance redirecting the user through a meta-refresh tag
to a new page, instead of changing the existing page with
JavaScript [1], which would circumvent protections such as
NoScript [12]. This attack however does not depend on user
activity, but rather on a predefined timeout, by which the
attacker hopes that the victim will have changed tabs and
thus will not notice the changing web-site.

Unlu and Bicakci [20] proposed NoTabNab, a browser ex-
tension that monitors tabs in search for tabnabbing attacks.
When a page loads, the extension records the title of the
page, the URL, the favicon and several attributes of the
topmost elements3, as determined by the browser API call
document.elementFromPoint(x,y). While this approach is
conceptually similar to ours, NoTabNab suffers from several
issues that render it ineffective.

A first issue is that by capturing a tab when it is loaded,
the extension will miss all content that is added dynami-
cally (e.g. using AJAX) between loading a tab and actually
switching to another tab. Second, the design of the detec-
tion mechanism offers an attacker several ways to evade it.
For instance, an attacker can place all of the page’s content
in an iframe that spans the entire visible window. The docu-
ment.elementFromPoint cannot“pierce”through the iframe,
and will always return the iframe element, regardless of any
changes that may happen inside the iframe. Another pos-
sible bypass, is through the overlay of a transparent ele-
ment, that again stretches the entire page’s content and al-
lows clicks and interactions to “fall-through” to the actual
phishing form under it. On the contrary, TabShots uses the
screen-capturing API of the browser and is essentially using
the same data as actually seen by the user. This design de-
cision makes TabShots invulnerable to the aforementioned
bypasses.

Suri et al. [19] propose the detection of tabnabbing through
the use of tabnabbing “signatures”. The authors claim that
the combination of certain JavaScript APIs with HTML ele-
ments are tell-tale signs of a tabnabbing attack, and present
two signatures, based on the presence of onBlur, onFocus,
and other events within an iframe. Unfortunately, the au-
thors make no attempt to characterize the false positives
that their system would incur. Additionally, the presence of
an iframe is by no means necessary for a tabnabbing attack.
JavaScript code is capable to drastically change the appear-
ance of a page through the addition and removal of styled
HTML elements, thus allowing an attacker to bypass the
authors’ monitor. TabShots on the other hand, does not de-
pend on anything other than the visual differences between
the old and the new version of the tab, and thus will detect
all visible changes, regardless of the technical means through
which they are achieved.

While tabnabbing is a relatively new phishing technique,
attackers have been trying to convince users to voluntarily
give up their credentials for at least the last 17 years [3].
Several studies have been conducted, trying to identify why
users fall victim to phishing attacks [5, 7] and various solu-
tions have been suggested, such as the use of per-site “page-
skinning” [4], security toolbars [23], images [2, 17], trusted
password windows [16], use of past-activity knowledge [11]
and automatic analysis of the content within a page [24].
Unfortunately, the problem is hard to address in a com-
pletely automatic way, and thus, the current deployed anti-
phishing mechanisms in popular browsers are all black-list
based [15]. The blacklists themselves are either generated
automatically by automated crawlers, searching for phish-
ing pages on the web [22] or are crowdsourced [13].

3When seeing a page as a stack of elements, the topmost
elements potentially overlay other elements

7. CONCLUSION
Tabnabbing attacks are a type of phishing attacks where

the attacker exploits the trust a user places in previously
opened browser tabs, by making the malicious tab look like a
legitimate login form of a known web application. This hap-
pens when the user is looking at another tab in the browser,
making it very hard to detect and very easy to fall victim
to.

Currently available countermeasures typically depend on
several specific characteristics of a tabnabbing attack, and
are easily bypassed or circumvented. Our countermeasure,
TabShots, is the first to do a fully visual comparison, de-
tecting any changes in an out-of-focus page and highlighting
them, aiding the user in the decision whether to trust this
page or not.

Our evaluation shows that TabShots protects users against
potential tabnabbing attacks, with a minimal performance
impact. Furthermore, an experimental evaluation using Alexa’s
top 1000 sites shows that 78% of these sites fall within the
safe threshold of less than 5% changes in subsequent snap-
shots. This means that TabShots is fully compatible with
these sites, and has very little impact on another 19%.

8. ACKNOWLEDGEMENTS
This research is partially funded by the Research Fund

KU Leuven, IWT and the EU-funded FP7 projects NESSoS
and Web- Sand.

With the financial support from the Prevention of and
Fight against Crime Programme of the European Union
European Commission – Directorate-General Home Affairs.
This publication reflects the views only of the authors, and
the European Commission cannot be held responsible for
any use which may be made of the information contained
therein.

9. REFERENCES
[1] E. Adler. Tabnabbing without JavaScript .

http://blog.eitanadler.com/2010/05/

tabnabbing-without-javascript.html.

[2] N. Agarwal, S. Renfro, and A. Bejar. Yahoo!’s Sign-in
Seal and current anti-phishing solutions.

[3] AOL acts to thwart hackers. http:
//simson.net/clips/1995/95.SJMN.AOL_Hackers.html.

[4] R. Dhamija and J. D. Tygar. The battle against
phishing: Dynamic security skins. In Proceedings of the
2005 symposium on Usable privacy and security, SOUPS
’05, pages 77–88, New York, NY, USA, 2005. ACM.

[5] R. Dhamija, J. D. Tygar, and M. Hearst. Why phishing
works. In Proceedings of the SIGCHI conference on
Human Factors in computing systems, CHI ’06, pages
581–590, New York, NY, USA, 2006. ACM.

[6] P. Dubroy. How many tabs do people use? (Now with
real data!). http://dubroy.com/blog/
how-many-tabs-do-people-use-now-with-real-data/.

[7] S. Egelman, L. F. Cranor, and J. Hong. You’ve been
warned: an empirical study of the effectiveness of web
browser phishing warnings. In Proceedings of the SIGCHI
conference on Human factors in computing systems, CHI
’08, pages 1065–1074, New York, NY, USA, 2008. ACM.

[8] D. Jang, R. Jhala, S. Lerner, and H. Shacham. An
empirical study of privacy-violating information flows in

JavaScript Web applications. In Proceedings of CCS
2010, pages 270–83. ACM Press, Oct. 2010.

[9] J. Leyden. Hackers break onto White House military
network. http://www.theregister.co.uk/2012/10/01/
white_house_hack/.

[10] L. Masinter. The “data” url scheme. 1998.

[11] N. Nikiforakis, A. Makridakis, E. Athanasopoulos, and
E. P. Markatos. Alice, What Did You Do Last Time?
Fighting Phishing Using Past Activity Tests. In
Proceedings of the 3rd European Conference on
Computer Network Defense (EC2ND), volume 30, pages
107–117, 2009.

[12] NoScript - JavaScript/Java/Flash blocker for a safer
Firefox experience! http://noscript.net/.

[13] PhishTank | Join the fight against phishing.
http://www.phishtank.com.

[14] A. Raskin. Tabnabbing: A new type of phishing
attack. http://www.azarask.in/blog/post/
a-new-type-of-phishing-attack/.

[15] Safe Browsing API – Google Developers.
https://developers.google.com/safe-browsing/.

[16] D. R. Sandler and D. S. Wallach. <input
type=“password”>must die! In Proceedings of W2SP
2008: Web 2.0 Security & Privacy 2008, Oakland, CA,
May 2008.

[17] SiteKey Security from Bank of America.
https://www.bankofamerica.com/privacy/

online-mobile-banking-privacy/sitekey.go.

[18] StatCounter. Screen resolution alert for web
developers.

[19] R. K. Suri, D. S. Tomar, and D. R. Sahu. An approach
to perceive tabnabbing attack. In Internation Journal of
Scientific & Technology Research, volume 1, 2012.

[20] S. Unlu and K. Bicakci. Notabnab: Protection against
the “tabnabbing attack”. In eCrime Researchers Summit
(eCrime), 2010, pages 1 –5, oct. 2010.

[21] Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and
C. Jackson. I still know what you visited last summer:
Leaking browsing history via user interaction and side
channel attacks. In Proceedings of the 2011 IEEE
Symposium on Security and Privacy, SP ’11, pages
147–161, 2011.

[22] L. Wenyin, G. Huang, L. Xiaoyue, Z. Min, and
X. Deng. Detection of phishing webpages based on visual
similarity. In Special interest tracks and posters of the
14th international conference on World Wide Web,
WWW ’05, pages 1060–1061, New York, NY, USA,
2005. ACM.

[23] M. Wu, R. C. Miller, and S. L. Garfinkel. Do security
toolbars actually prevent phishing attacks? In
Proceedings of the SIGCHI conference on Human
Factors in computing systems, CHI ’06, pages 601–610,
New York, NY, USA, 2006. ACM.

[24] Y. Zhang, J. I. Hong, and L. F. Cranor. Cantina: a
content-based approach to detecting phishing web sites.
In Proceedings of the 16th international conference on
World Wide Web, WWW ’07, pages 639–648, New York,
NY, USA, 2007. ACM.

