
What GetsMeasured GetsManaged: Mitigating
Supply Chain Attacks with a Link IntegrityManagement System

Johnny So
josso@cs.stonybrook.edu
Stony Brook University

Stony Brook, New York, USA

Michael Ferdman
mferdman@cs.stonybrook.edu

Stony Brook University
Stony Brook, New York, USA

Nick Nikiforakis
nick@cs.stonybrook.edu
Stony Brook University

Stony Brook, New York, USA

Abstract
The web continues to grow, but dependency-monitoring tools and
standards for resource integrity lag behind.Currently, there exists no
robustmethod to verify the integrity ofweb resources,much less in a
generalizable yet performant manner, and supply chains remain one
of the most targeted parts of the attack surface of web applications.

In this paper, we present the design of LiMS, a transparent sys-
tem to bootstrap link integrity guarantees in web browsing sessions
with minimal overhead. At its core, LiMS uses a set of customizable
integrity policies to declare the (un)expected properties of resources,
verifies these policies, and enforces them for website visitors. We
discuss how basic integrity policies can serve as building blocks for a
comprehensive set of integrity policies, while providing guarantees
thatwould be sufficient to defend against recent supply chain attacks
detailed by security industry reports. Finally, we evaluate our open-
sourced prototype by simulating deployments on a representative
sample of 450 domains that are diverse in ranking and category. We
find that our proposal offers the ability to bootstrap marked security
improvements with an overall overhead of hundreds of milliseconds
on initial page loads, and negligible overhead on reloads, regardless
of network speeds. In addition, from examining archived data for
the sample sites, we find that several of the proposed policy build-
ing blocks suit their dependency usage patterns, and would incur
minimal administrative overhead.

CCS Concepts
• Security and privacy→Web application security.

Keywords
Web Resource Integrity; Policies; Browser; ServiceWorker

ACMReference Format:
Johnny So, Michael Ferdman, and Nick Nikiforakis. 2025. What Gets Mea-
sured Gets Managed: Mitigating Supply Chain Attacks with a Link Integrity
Management System. In Proceedings of the 2025 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’25), October 13–17, 2025, Taipei,
Taiwan.ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3719
027.3765094

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1525-9/2025/10
https://doi.org/10.1145/3719027.3765094

1 Introduction
The Internet is an interconnected web formed by the linking of
resources. By providing core standards such as how to specify a Uni-
form Resource Locator (URL) for the address of a resource, the web
enables a diverse array of applications to interface with one another.
These standards build onone another, relying on their foundations to
perform their intended functions, as they provide higher-level, and
often more easily programmable features. However, there currently
existsno robust standard thatprovides adequate integrityguarantees
for a web that relies on addresses whose contents can change.

Thus, the external parties which provide resources such as scripts
and stylesheets comprise a significant part of the attack surface
of web applications. In supply chain attacks, adversaries compro-
mise existing third parties of a site to modify requested resources
to deliver malicious payloads to visitors. Such attacks have recently
taken the form of redirectors injected in a popular polyfill library,
affecting hundreds of thousands of sites [27]; credit card skimmers
injected into a chatbot on an e-commerce site, resulting in a $1.7M
USD fine [19, 39]; a skimmer that abused residual trust in an expired
domain, affecting dozens of e-commerce sites [17]; cryptojackers
injected into an accessibility library, with government sites among
the over 4,000 affected [12]; fake browser updaters served from
blockchains [56]; and keyloggers in place of trust seals [11]. Ideally,
administrators should discover these attacks immediately after they
occur, to minimize the impact on their users. However, this may be
impractical to do in reality with existing solutions, and so they are
often detected after a portion of the site userbase has been exploited.

State-of-the-art integrity mechanisms, limited to only Subre-
source Integrity (SRI) [61] and Content Security Policy (CSP) [59],
can offer some level of protection against supply chain attacks. SRI is
a web standard that includes a new integrity attribute to the HTML
script tag that leverages cryptographic hashes to ensure that the
received script content is exactly the same as the expected content.
Similarly, CSP provides features that are relevant to integrity, al-
though it was originally designed to prevent cross-site scripting
attacks. At its core, CSP provides a guarantee that resources are
loaded from explicitly allowed origins. Newer versions of CSP have
introduced support for strict content integrity of scripts by leverag-
ing cryptographic hashes to check for exact matches [60, 64]. Both
of these standards use strict, hash-based content integrity checks.
However, such integrity verificationmechanisms are applicable only
for a minority of resources which are not expected to change, such
as specific versions of JavaScript libraries loaded from CDNs. In all
other cases (for both JavaScript as well as arbitrary resources), exact
byte-for-byte checks are impractical in real-world scenarios [46].

Contributions. In this work, we propose a Link Integrity Man-
agement System (LiMS) to primarily combat supply chain attacks

https://doi.org/10.1145/3719027.3765094
https://doi.org/10.1145/3719027.3765094
https://doi.org/10.1145/3719027.3765094

CCS ’25, October 13–17, 2025, Taipei, Taiwan Johnny So, Michael Ferdman, & Nick Nikiforakis

by ensuring the integrity of links on web applications, according
to configured integrity policies, at the client in near real time. In
particular, we summarize our contributions as follows:
• Integrity Policies: the concept of granular integrity policies
as methods to describe the integrity of a web resource by
declaring (un)expected properties.
• Policy Enforcement: the application-agnostic design of an
integrity policy verification and enforcement system that
blocksHTTPS requests frombeing sent by clients to resources
which have violated their corresponding integrity policies,
minimizing the potential for data exfiltration.
• Centralized LinkManagement: the ability to discover all
types of links on deployed sites, including first-party, third-
party, and anchor links with high fidelity, and manage them
from a centralized solution.
• Policy Building Blocks: the proposal of basic policies that
can be used as building blocks to form a comprehensive set
of integrity policies, while providing guarantees that would
be sufficient to defend against recent supply chain attacks
detailed by industry reports.
• Evaluation: the implementation and evaluation of a proto-
type, finding minimal performance overhead and no loss of
functionality to first-party applications, and demonstrating
the applicability of several policy building blocks based on
archived snapshots of sites.

The rest of this paper is organized as follows: we discuss relevant
background in Section 2, the system design in Section 3, the policy
building blocks in Section 5, the evaluation of our prototype in Sec-
tion 6, the related works in Section 7, the limitations and planned
work in Section 8, and our conclusions in Section 9.

2 Background
In this section, we discuss web integrity and the threat model.

2.1 Resource Integrity
Subresource Integrity (SRI) [61]andContentSecurityPolicy (CSP) [59]
are existing web standards that provide integrity guarantees based
on strictmechanisms that check for exactmatches between expected
and received content, by leveraging cryptographic hash functions.
Through these mechanisms, website developers may specify the
expected hash digest(s) of JavaScript files on webpages through the
integrity attribute in HTML <script> tags for SRI, or through the
script-src directive for CSP. If these are present, the user agent (e.g.,
browser) is expected to compare the hash of the actually received
content against the predefined hashes, and block the loading of
resources whose computed hashes do not match their expected ones.

Exact matching works for static resources that are not expected
to change (e.g., a specific version of a library from a CDN), but does
not apply to a significant portion of resources that are dynamic. For
such resources, their URL address, content (e.g., through updates
or dynamic modifications to whitespace, syntax, block ordering,
comments or data), or dependencies (e.g., fourth-party scripts) [46]
may frequently change. Furthermore, prior work has uncovered that
frequently-changing scripts are no longer the exception, but the norm
in the modern web: when crawling tens of thousands of domains
daily, the study found that only 11% of script URLs are static, and

only 3% have static content [46]. The lack of integrity guarantees for
these resources is concerning — there are no security measures that
can protect users if the contents of such resources are unexpected.

2.2 Threat Model
Consider the following scenario: a user visits example.com which
pulls in external subresources on its pages, such as fonts, images,
cascading style sheets and JavaScript files. The administrators of
example.com use an appropriate CSP that defines lists of trusted ori-
gins for their external resources, andmark static resourceswith their
expected SRI hash digests. However, they also use resources that are
not easily integrated with strict content integrity checks offered by
SRI or CSP, such as foo.com/foo.js. Although the example.com admin-
istrators include the origin foo.com in their CSP script-src directive,
there is no expected hash for that script.

Scenario A : Expiration. If foo.com expires and is re-registered,
visitors of example.com could suffer from a supply chain attack when
fetching, and executing, malicious JavaScript from foo.com/foo.js in
their browsers. Ideally, example.com administrators would discover
this, remove the script from their page, and update their CSP, before
the foo.com domain is expired or re-registered, but this process could
take an extended amount of time [48]. Similarly, the domains of an-
chor links (HTML <a> tags) found on example.com are also subject to
the same issue.Although thedamagemaynot be as severe as a supply
chain attack (e.g., with the foo.js script), if an anchor links points to
a malicious domain, it will still negatively affect the reputation of
example.com. SRI and CSP cannot be applied to anchor links.

Scenario B : Link Content Change. Alternatively, it may be the
case that the domain foo.com did not expire, but the content of
foo.com/foo.js unexpectedly changes. SRI and CSP are not applicable
because the script is dynamic. Regardless of whether the change oc-
curs because of a malicious compromise, or an unscrupulous update
to its data collection practices, the administrators of example.com
may desire to have an automatic mechanism to inform them if
foo.com/foo.js changes in an unexpected manner, and block that
resource for their visitors. As in Scenario A , site admins may also
be interested in applying this mechanism to anchor links as well.

ThreatModel. Auser interactingwith anonline, benignweb appli-
cation thatproperlyutilizesSRIandCSP loadsexternal resources that
may have been undesirably modified. The goal of LiMS is to prevent
supply chain attacks on its deployed website, assuming a sufficient
and robust set of integrity policies, bydetecting “significant” changes
to dependencies in near real time, blocking all website visitors’ re-
quests to these resources, and flagging the incident to administrators.
The threshold for the significance of change is determined by the set
of integrity policies that are enabled by administrators, and should
ideally encapsulate both Scenarios A and B . If a malicious third-
party script is able to execute in the browser of a site visitor, that
means the configured integrity policies did not flag the (change in
that) resource. Section 3.4 elaborates on the trustmodel underwhich
LiMS operates, and Section 4 further discusses security-critical de-
tails that are imposed by design and implementation choices.

What Gets Measured Gets Managed CCS ’25, October 13–17, 2025, Taipei, Taiwan

policy = { rule };
rule = action, url_pattern_page

, url_pattern_resource, ["if", condition_name], ";" ;
action = "allow" | "deny";
url_pattern_page = url_pattern
url_pattern_resource = url_pattern
url_pattern = '"', { url_char | "*" }, '"' ;
url_char = letter | digit | "." | "/" | ":" | "_" | "-" ;
condition_name = policy_building_block | custom_condition ;
custom_condition = letter, { letter | digit | "_" } ;

Listing 1: EBNF grammar for the LiMS integrity policy language.

2.3 ServiceWorkers
In our prototype, we implemented the client of LiMS as a service
worker (SW) [38], a performant worker that acts as a proxy between
the browser and the network. Although service workers were not
explicitly designed for our use case (one of the original design goals
was to enable the creation of offline web applications), we found
that their capabilities expressly suited our needs: the ability to trans-
parently intercept all HTTPS requests (including navigations) that
originate from thepages under its purview, and take different actions.
Furthermore, this implementation choice leverages a web standard
supported by all major browsers [25], and removes the need to di-
rectly modify browser code – which are highly-optimized and mas-
sive repositories of software – thereby improving the accessibility of
LiMS for site administrators and researchers. We further discuss the
role of the client SW in Section 3.2 and its disadvantages in Section 8.

3 LinkManagement System (LiMS)
LiMS guarantees that an HTTPS request originating from a user of a
website is sent if and only if its pre-configured integrity policies hold
true at the time of, or near the time of, the request. If at least one pol-
icy does not hold true, then LiMS will temporarily block all visitors’
requests for that resource, and flag the incident for administrators.
This functionality is ensured by three main components working in
tandem: the client-side component that intercepts requests (“client”),
the server-side component thatmanages link state (“server”), and the
server-side component that verifies configured policies on demand
(“verifier”). Figure 1 presents a high-level diagram of LiMS that can
be followed with the next sections that discuss:

• (§3.1) the fundamental integrity policies that describe the
(un)expected properties of resources,
• (§3.2) the client service worker that enforces policy decisions
and blocks requests to resources that violate their correspond-
ing policies,
• (§3.3) the server that responds to the client with whether re-
quests should be blocked, as well as the verifier that verifies
the configured integrity policies on demand.

In addition, the trust model of LiMS is discussed in Section 3.4,
and deployment strategies in Section 3.5. We open-sourced our
prototype implementation of LiMS, which can be found at https:
//github.com/link-integrity-management-system/lims.

Algorithm 1 Request interception logic from the perspective of
the LiMS client-side service worker.
1: procedure InterceptReqest(req)
2: allowed← False
3: if HasValidCacheEntry(req) then
4: allowed←GetStatusFromCache(req)
5: else
6: allowed←QueryAndCacheLinkStatus(req)
7: end if
8: if allowed then
9: Fetch(req) ⊲Defer caching to the browser
10: else
11: Generate404Response(req)
12: end if
13: end procedure

3.1 Integrity Policy Language Specification
Integrity policies form the core of LiMS by expressing certain condi-
tions— in code— that are always expected to be true for subsets of re-
sources.Thus, an individual integritypolicy isnot intended toencom-
pass all conditions that an administrator wishes to ensure, but rather
a single check for a class of resources. To this end, LiMS is designed to
scalewith the use ofmany concurrently active policies. Furthermore,
as the integrity policies themselves are configurable, the conditions
they support are highly varied, running the gamut from exactly
matching the content of resources, to verifying the initiator of the re-
quest itself, to comparing the network infrastructure of a third party.

Listing 1 uses Extended Backus-Naur Form (EBNF) to describe the
LiMS policy language. Integrity policies are defined as rule sets that
invoke conditions for matching URL patterns. There are two URL
patterns for each policy: the first matching a first-party page URL,
and the second matching an expected resource request URL on that
page. The client either allows or blocks each request by matching it
against a policy’s URL patterns and evaluating the condition (if one
is specified). The conditionmay refer to the name of a policy building
block, as described in Section 5, or a custom policy conditionwritten
by an administrator. The policy conditions execute on the server
and can verify the (un)expected properties of the requested resource,
including re-enacting the request contextwithhighfidelity, if desired.
The conditions are evaluated and used asynchronously (§3.3).

Administrators can implement policy conditions in a familiar pro-
gramming language (e.g., NodeJS). A simple policy can provide the
same guarantees as existing defense mechanisms such as SRI (e.g.,
check that the hash of the response content matches), but the design
of LiMS offers greater flexibility. For example, a condition can replay
a script request by launching aheadless browser andvisiting thefirst-
party page on which the script was found, allowing LiMS to check
parameters such as the script request initiator, the geographic loca-
tion(s) of the remote provider servers, structural signatures, fourth-
party inclusions, and randomization or time-varying behavior [46].

However, we recognize that complex security policy systems are
not always utilized to their full potential (e.g., CSP is oftenmisunder-
stood and hard to use correctly [37]), and so accordingly we present
universally-applicable policies that can be used as the foundation
of comprehensive integrity policies in Section 5.

https://github.com/link-integrity-management-system/lims
https://github.com/link-integrity-management-system/lims

CCS ’25, October 13–17, 2025, Taipei, Taiwan Johnny So, Michael Ferdman, & Nick Nikiforakis

example.com

Browser

lims.example.comUser

VerificationsPolicies

REQUEST
foo.com/bar

foo.com

url allowed?

Yes No

Unknown,

Verify(url)

Recently

verified?

NoPolicies

configured? Yes
For each

policy p...

Yes

All

policies

pass?

No

Yes

Verify(p, url)

Forward the

decision

No

LiMS Backend

System

enabled?
Yes

No

URL Status

1 2

3 4

6

5

Verifier

Client

SW

0

API

Figure 1: Diagram depicting high-level interactions between the client service worker and the LiMS API that comprise the verification protocol to
determine whether an outgoing request should be allowed, or blocked, by the service worker.

3.2 Policy Enforcement
The LiMS client directly impacts users, as it enforces policies by
blocking HTTPS requests to resources that violate their correspond-
ing policies, as shown in the left of Figure 1. In our prototype, the
client is implemented as a service worker (SW), which brings two
main benefits to LiMS: transparent operation and performance.

Transparent Operation. When a site deploys LiMS, they will add
a JavaScript function call to navigator.serviceWorker.register that
instructs browsers to install the specified SW. This SW is capable
of intercepting all fetch requests that originate from a page under its
control (including navigation requests); thus, by registering the SW
with a control scope set to the root of the domain, it will be able to
intercept fetch requests from any page of that domain. If supported
by the browser, the SW will be installed, assume control over all
applicable pages, and then refresh all tabs under that domain to en-
sure that resources on the page only load if their policy verifications
succeed. If not supported by the browser, there will be no change to
existing, first-party functionality.

While the client SW is active, it will regularly poll the API server
for its configuration settings, doubling in functionality as a heartbeat
message. This periodic polling serves as an alternative for push no-
tifications that the server may send to revoke verification decisions
from the client cache (useful if the client disables or is unable to
receive push notifications). If the number of times that the client SW
fails to connect to the API server exceeds a configurable threshold,
it will automatically revert to a no-op mode by disabling its request
interception logic, until it successfully receives a response.

Performance. In our prototype, we opt for a straightforward im-
plementation that offloads the processing of policies, and detections
of violations, to a server-side component that can reuse the verifica-
tion decisions for different users, thereby rendering the client as a
simple proxy. When the client intercepts a request, it only queries
the server for whether the request should be allowed to proceed,
and locally caches the decision it receives to be reused for a certain
duration of time. An overview of the main client logic can be found
in Algorithm 1.

Server-side verification in this manner enables the following: the
first user who loads a resource that needs to be (re-)verified will
have the policy verifier make a decision that can be reused on the
next request for that resource, even if it is from a different user. Fur-
thermore, this will keep the overhead of the LiMS design within

Algorithm 2 Policy enforcement logic from the perspective of the
LiMS server-side API.
1: Class BasePolicy
2: Variable locationSource : String
3: Variable locationTarget : String
4: Variable logic : Function
5: Variable output : Bool
6:
7: procedureGetLinkStatus(req)
8: link←GetLink(req)
9: verifications←GetVerifications(link.id)
10: for v of verifications do
11: if v.failed then
12: return false
13: end if
14: end for
15: return true
16: end procedure

acceptable bounds, even though LiMS intercepts requests — and
sends additional ones — made by web applications that may have
explicit requirements for fast user interfaces. In short, a server-side
component verifies policies and communicates these decisions to
client-side, in-browser, integrity proxies that uphold the guarantees
for the user. This choice introduces challenges to accurate verifica-
tion of integrity policies (which are elaborated in Section 8), but we
argue that this is a necessity given modern website-speed require-
ments [7] and discuss its implications in Section 4.

3.3 LinkManagement and Policy Verification
As described in Section 3.2, the client SW component that enforces
policies is intentionally simple — it defers all decisions it does not
knowabout to the backend. The backend components, as can be seen
on the right side of Figure 1, comprise the API server and the verifier.

LiMS Server. The server-side component that responds to queries
from the SW (“server”) exposes a simple API to determine whether
client resource requests should be allowed.When receiving a request
from the client, it records metadata about the request, including the
page where the request was encountered and the request URL, deter-
mines which policies are applicable to the request, and consults its
cache for recent verifications for each policy. If there exists a valid,
recent verification for every applicable policy, the server responds to

What Gets Measured Gets Managed CCS ’25, October 13–17, 2025, Taipei, Taiwan

Algorithm 3 Policy verification logic from the perspective of the
LiMS server-side verifier.
1: procedure VerifyLink(link)
2: policies←GetPolicies(link)
3: for policy in policies do
4: success← ExecutePolicy(policy, link)
5: CacheVerification(link, policy, success)
6: end for
7: end procedure

the client with the decision to allow the request; if at least one policy
has recently failed its verification for the request, the server responds
with the decision to block the request. If any policy was not recently
verified, the server can respond to the client with a default decision,
or optionally schedule the verifier to process it on-demand and use
the result, if it does not exceed a configured timeout. Algorithm 2
describes an overview of the main server logic.

LiMS Verifier. The last major LiMS component is the verifier,
which processes integrity policies to determine if the conditions
they express hold true. These results are termed verification deci-
sions, and they are stored in a cache so that the server can use them
to formulate its response to queries from the client. As shown in
Figure 1, the verifier is not directly part of the client-server request
flow. Instead, it interacts with the server asynchronously to verify
policies on demand. If configured, the verifier can also periodically
verify all policies before their cached decisions expire, in order to
maintain a warm system state and meet performance requirements.

When the verifier receives a verification request, it filters all poli-
cies for those thatmatch thepagewhere the requestwas encountered
and the policy target URL pattern, to obtain the set of policies that
are applicable to the request. Next, it executes the logic in each policy
and caches the outcome of each verification which remains valid for
each policy’s time-to-live duration. These cached verification deci-
sions will then be used by the server, when it receives a request from
the client. Algorithm 3 summarizes the basic verifier functionality.

As the verifier is a server-side component, it is imperative to en-
sure that the process of policy verification does not sit in the hot path
of the client’s request to the server. The asynchronous interaction
model between the server and the verifier, where they leverage the
database as an intermediary, is designed to minimize the overhead
imposed by LiMS. In an ideal, warm state, verifiers can periodically
verify all links against all policies, before any cacheddecisions expire,
to ensure the cache is always populated for requests received by the
server. If there is always a cached decision, the server only requires
a database lookup before responding to the client with a decision on
whether the request should be allowed.

3.4 Trust Model
LiMS is designed to combat the threat model outlined in Section 2.2,
in which a trusted first-party application depends on resources from
a third party whose contents may change without notice, by plac-
ing flexible integrity policies on resources. To do this, each of the
major LiMS components outlined in Figure 1 must be trusted: the
integrity policies, the client service worker, the server that responds
to client queries, the policy verifier, and the database or cache that
stores policy information and verification decisions. If any of these

components are compromised or dishonest, then an adversary can
effectively disable LiMS. A dishonest server can respond to client
queries to trust undesirable resources; a dishonest verifier can de-
cide to trust resources, regardless of the configured policies; and
a compromised database can lead the server to believe that policy
verifications succeeded. Moreover, LiMS necessarily trusts the first-
party application (and the client service worker), and expects an
honest browser environment. Otherwise, a compromised first-party
may not deliver the expected client service worker code, or a mali-
cious browser extension may silently interfere with regular service
worker operations (e.g., by blocking the request that fetches service
worker code and preventing installation of the client, or blocking
client requests to the LiMS server).

3.5 Deployment
Interested researchers and administrators can deploy LiMS for exist-
ing applications at minimal cost. Our open-sourced artifact provides
ready-made prototypes for each system component as Docker con-
tainers. To self-host a deployment, an administrator needs to obtain
a server to host the containers, to expose a public file that contains
the service worker code at the root of the sites they wish to protect
(e.g., at example.com/sw.js), and to include a snippet of JavaScript code
that registers the service worker in HTML documents. For sites with
existing service workers, the logic of the SW can be added to the
start, or to the end, of the request handling logic to avoid breaking
existing SW functionality. As we later see in Section 6.2, the imme-
diate benefits for sites that already utilize service workers is actually
greater than those for sites that do not, because of the base overhead
imposed by the existing service worker request interception.

Serviceworkers are supported by all major browsers [25], and the
enforcement logic is designed to provide smooth opt-in and opt-out
experiences. If a user’s browser does not support service workers
(e.g., because of an old version), or if the user has configured their
browser to block service worker installations (e.g., because of pri-
vacy concerns), their browsing sessions will be exactly the same for
sites that deploy LiMS and those that do not. If a user whose browser
supports service workers visits an LiMS-enabled site, the SWwill
force a refresh on all tabs for that site upon installation to ensure that
the integrity policies are applied. If a site owner wishes to remove
LiMS, they only need to include a snippet of JavaScript that unin-
stalls any existing service worker registrations in client browsers,
and take down the backend components. Additionally, if any client
SW is unable to reach the backend components, it will automatically
revert to a no-op mode that does not enforce any integrity policy
decision, nor make additional network requests.

3.5.1 Multi-Stage Deployment. Deployment of LiMS can be per-
formed in multiple stages to facilitate a smooth onboarding. In the
first link discovery stage, the API server can function in a no-op
mode, respondingwith a defaultmessage that allows all requested re-
sources, effectively populating the LiMS database with the links that
are requested by users in real time. In the next report-only stage that
functions similarly to the mode in CSP, administrators can review
the links (as they populate) to start writing their desired policies, and
configuring the server to always respond that requests are allowed,
even if any policy is violated. Violations will be reported by the API
server and stored in the database by the policy verifier, enabling

CCS ’25, October 13–17, 2025, Taipei, Taiwan Johnny So, Michael Ferdman, & Nick Nikiforakis

administrators to review existing policies to check for errors. When
the policies provide sufficient coverage, LiMS can be switched into
a normal operation mode: if any corresponding policies are violated,
the API server will instruct the client SW to block the request.

4 Security Considerations
As LiMS is designed to provide additional integrity guarantees, LiMS
itselfmust be sufficiently robust in our threatmodel. This section dis-
cusses an array of security-critical topics, including the suitability of
service workers in our threat model, policy robustness, high-fidelity
link discovery and management, caching exploits, camouflaging,
and policy consistency and updates.

4.1 ServiceWorker
We leverage service workers to provide integrity guarantees for
users, such as those presented in Section 5, by assuming that the
content delivered over the network may be malicious or undesirable
because of domain expirations and re-registrations (Scenario A
from Section 2) or changes to third-party content (Scenario B).

LiMS uses service workers as the component to enforce policy
verification decisions within client browsers. In our threat model,
an undesirably-modified resource in the supply chain of a first-party
site should ideally be flagged by one or more policies, causing user
requests for that resource to be blocked. If the resource is not flagged
by anypolicies, then that indicates there is a gap in the set of integrity
policies deployed by the site administrators, and the script will be
allowed to load. Any HTTPS requests made by this modified script
must pass all appropriate policies, or theywill be blocked andflagged.

LiMS requires every page of the first-party site to include the
JavaScript code for service worker registration, ensuring that the
client browser installs the service worker regardless of which page a
user visits. The service worker only needs to be registered, installed,
and activated once, until a new version of the service worker code
is fetched. After installation, the service worker will be present on
all subsequent visits. Cautious administrators would configure their
sites to install the serviceworker before other scripts load (i.e., before
redirecting to the main content), as the service worker container
is exposed to JavaScript via the navigator.serviceWorker property.
Before the LiMS service worker is activated, malicious third-party
JavaScript could interfere with the service worker registration. We
expect a benign first-use environment and consider this case outside
of our threat model, but it is possible for the client to be subject to at-
tacks from amalicious script that was not blocked by the configured
integrity policies, which we outline next.

4.2 JavaScript-based Attacks
Any JavaScript file that is included and loaded in the webpage will
have access to the navigator.serviceWorker object. Access to this object
grants the ability to install a service worker hosted at an HTTPS
URL within the origin; thus, a malicious third-party script cannot
install an arbitrary service worker without control of the origin’s
web server. A malicious script can uninstall a service worker, but an
uninstalled service worker retains control of the page until the subse-
quent navigation. Thus, malicious third-party JavaScript that was
not blocked can attempt to disable LiMS by unregistering service
workers and triggering a refresh or navigation, but the LiMS service

worker, if properly deployed, will be the first thing re-installed on
the subsequent page load. Theoretically, attackers can repeat this
behavior while a gap in the integrity policies persists, but the attack
would be limited to denial-of-service (rather than, for example, skim-
ming credit cards), and the behavior would drastically accelerate
discovery of the malicious script.

A malicious script that bypasses the configured integrity poli-
cies may also attempt a denial-of-service attack on the client ser-
vice worker by flooding it with spurious messages through the
navigator.serviceWorker.controller.postMessage API, or with fetch
requests. The service worker can easily detect the former. During
normal usage, the service worker would encounter a message only
once from the registration script to forcibly refresh the page after
installation, and subsequent messages can be ignored. However, the
latter introduces additional network requests and, in turn, additional
policy verifications for the resources.

In general, if a malicious third-party script is allowed to load on a
client, that means that the configured integrity policies for that site
have been bypassed. LiMS is not intended to defend against other
attacks such as prototype pollution or DOM hijacking.

4.3 Policy and Cache Robustness
Sites that deploy LiMS can configure anunlimited number of policies.
As these policies are not communicated outside of the LiMS backend
(see Figure 1), a supply-chain attacker cannot directly learn of the
policies that are configured for a site. They can indirectly infer poli-
cies by iteratively modifying properties of a resource on the supply
chain, and observing whether the LiMS client service worker blocks
the request for that resource. However, indirectly inferring policies
can be expensive, as many variables are unknown: the number of
associated policies for each resource, the exact checks performed by
each policy, and the cache duration of each policy.

As such, an adversary that wishes to stealthily modify a recently
verified resource, while the decision remains cached, must resort
to iteratively probing for information by improperly changing the
resource and causing LiMS to block it, for extended periods of time.
We expect administrators to investigate the resources that LiMS
blocks, thereby uncovering the offending link(s) before an adversary
is able to extract sufficient knowledge of the policies. In general, we
recommend that administrators configure multiple types of policies
to check different integrity dimensions [46] for dynamic resources
in sensitive locations (e.g., the request initiator for, and fourth-party
inclusions of, an external script on an ecommerce checkout page).

4.4 Link Discovery &Management
LiMS provides another security-critical feature, in addition to the
integrity guarantees: the ability to map out all types of links on their
sites with high fidelity, and the ability to manage all of them from
one centralized solution.When the client SW encounters a link with
an unknown status, it will query the server to check if the request
should be allowed to proceed. In the process, the LiMS server will
automatically build a database of all links, on all pages, of thewebsite.

Typically, link discovery mechanisms can be classified as some
combination of the following strategies: crawling, intercepting net-
work traffic (e.g., web application firewall), tracking application or
web server logmessages, analyzing source code or runtime behavior,

What Gets Measured Gets Managed CCS ’25, October 13–17, 2025, Taipei, Taiwan

or monitoring real users. There exist many link discovery products
in industry, but they are primarily crawlers for the purpose of search
engineoptimization,webapplicationfirewalls, oruserbehaviormon-
itors for analytics services. To the best of our knowledge, LiMS is
the first proposal to bootstrap integrity guarantees to web browsing
through integrity policies, to offer high-fidelity link discovery based
on real-user monitoring, and to provide centralized management.

4.5 Resource Camouflaging
The LiMS client does not directly detect camouflaging, as service
workers are prohibited from inspecting cross-origin response con-
tents. If desired, developers can deploy their own cloaking-detection
pipeline that simulates different user classes (e.g., desktop ormobile)
and networks (e.g., residential or cloud) to detect links whose con-
tents vary by predetermined parameters. This approach was shown
effective in prior work [14]. Additionally, developers can also use
malware detection services to detect cloaking. Such data can feed
into a LiMS policy that denies requests to resources that appear to
use camouflaging techniques, as in Section 5.3.

4.6 Policy Consistency
In the event that aLiMSadministrator erroneously configures contra-
dictory policies, this would cause continuously-failing verifications,
and the associated resources will always be blocked. The adminis-
trator would readily notice and investigate the growing number of
verification failures. It is also possible to incorporate logic to identify
conflicting policies and warn the administrator when such policies
are enabled. For example, another monitoring component can be
introduced to the backend of LiMS, which can periodically scan for
resources that are governed bymultiple policies which always result
in contradicting verification decisions.

4.7 Policy Updates
If an administrator wishes to update an existing policy, LiMS can in-
validate active verification decisions for that policy in the server-side
cache. When the server encounters a client request for a resource
governed by the updated policy, it will trigger a re-verification ac-
cording to the new policy. Verification decisions cached by the client
for these resources will be invalidated either via push notifications
or heartbeat responses.

Policiesmay need to be updated in some scenarios. For example, if
a policy blocks a changed benign resource, the duration of time from
when the resource changed until the policy is updated could result in
broken page functionality, but administrators can readily investigate
blocked resources. On the other hand, if a policy continues to allow
recently-changed resources, a malicious script may be allowed to
load, possibly leading to some attacks described in Section 4.2.

5 Policy Building Blocks
In this section, we focus on the capabilities of integrity policies, and
present several universally-applicable policies in the context of no-
table historical security incidents arising from malicious changes
in resources used by an online, first-party application. In particular,
we focus on how LiMS could have efficiently defended against each
breach using simple policies that are not able to be implemented in
existing integrity mechanisms (e.g., CSP).

Algorithm 4 A sample integrity policy that denies requests to
resources whose domains were recently registered.
1: Class PolicyDomainLifecycle
2: Variable locationSource = "example.com/.*"
3: Variable locationTarget = ".*"
4: Variable logic = IsRecentlyRegistered
5: Variable output = False
6:
7: procedure IsRecentlyRegistered(req)
8: threshold←GetRegistrationThreshold()
9: allowlisted← IsAllowlistedForRegistration(req.domain)
10: recentReg←GetRecentRegistration(req.domain)
11: returnNOT allowlisted AND recentReg > threshold
12: end procedure

Table 1 summarizes the policies proposed in this section, and lists
related security incidents. These policies are intended to illustrate
their usefulness in the context of actual security incidents: they are
not meant to provide an upper or lower bound on the capabilities
of integrity policies. We also note that although the functionality
offered by LiMS is a superset of the functionality offered by CSP and
SRI, LiMS is not designed to be a drop-in replacement for them.

This section discusses these policies at a high level as the goal is
to convey the potential of policies, and of LiMS, to provide integrity
guarantees in a flexible manner, and not to present exact algorithms.
We defer readers who are interested in the policies described in this
section to the pseudocode in the extended version of this paper [47]
and to the prototypes in the open-sourced artifact.

5.1 Policy: Domain Lifecycle
It is imperative for administrators to be able to detect when their
included resources belong to domains that are about to expire, or
have already expired, as their sites may be vulnerable to supply
chain attacks bymalicious re-registrants of the expired domains [48].
However, there are no default or standardized mechanisms that
perform this function. It is possible for dependencies of domains
to expire and go unnoticed for months, and for attackers to select
particular expired domains to target infrastructure, or opportunis-
tically re-register them and exploit whatever is available [23, 48].
For instance, a 2022 report detailed a campaign that re-registered
the expired domain of an analytics service that was discontinued in
2014 to serve credit card skimmers, and it was still able to impact
over 40 different e-commerce sites [17]. There have beenmany other
campaigns where attackers infect websites, inject malicious code
on checkout pages, and exfiltrate credit card numbers as users type
them, to newly-registered domain names [6, 17, 41, 42].

Algorithm 4 presents a basic policy that blocks requests for all
resources whose domains were registered after a configured thresh-
old. Recent registration data can be obtained fromWHOIS data, or
inferred from passive DNS data. Although the policy itself prevents
requests to domains that are newly registered and does not attempt
to distinguish domains that had previously expired, it can be mod-
ified to distinguish between previously-observed domains that have
expired, and then were re-registered. This policy does not protect
against attackers who have compromised an existing party in the
supply chain of the first-party site, but it does effectively negate the

CCS ’25, October 13–17, 2025, Taipei, Taiwan Johnny So, Michael Ferdman, & Nick Nikiforakis

Table 1: Basic integrity policies to use as building blocks to build a comprehensive set of integrity policies.

Policy Description Recent Incidents

Domain Lifecycle Domain was recently registered [6, 17, 41, 42, 48]
Domain Ranking Ranking of domain is below a threshold
Threat Intelligence Domain or IP address found in threat intelligence feeds [41, 56]
Dependencies Change in set of third-party origins that are contacted by a script [6, 11, 12, 20, 26, 29, 40, 41, 55–58, 62]
SRI Violation Reporting Client-side errors such as failed SRI verifications -
Infrastructure Attributes Geographic restrictions on servers that provide dependencies [56, 58]
CMS Core File Integrity Modifications of core CMS files (e.g., WordPress or Magento) [20, 24, 51]

threat of re-registrations of existing domains in the supply chain that
were left to expire (Scenario A from Section 2) and the common
DNS evasion pattern that uses throwaway, short-lived domains in
web malware infrastructure [2, 3]. Note that this policy also applies
to domains that exist in CSP allowlists.

5.2 Policy: Domain Ranking
Domainreputationandpopularity canserveasan indicatorofquality
and security: higher-ranking sites are generally expected to have bet-
ter security postures because of their amount of users. Although it is
not an absolute relationship, studies have found some evidence that
generally support this correlation [37, 44]. Thus, administratorsmay
desire restricting resources that are fetched from, and linked to via
anchor links, lower-ranked domains for security, or to improve the
ranking of their own domains. This policy does not protect against
attackers who can introduce a high-ranking domain, but adversaries
commonly resort tousing throwawaydomains,whichwill inevitably
be low ranked or unranked in robust ranking lists (e.g., Tranco [35]).

5.3 Policy: Threat Intelligence
Threat intelligence feeds and domain blocklists provide data sources
comprising indicators of compromise. These sources aggregate sus-
picious indicators from prior security incidents, such as data exfiltra-
tion endpoints (domains or IP addresses), or hashes of compromised
files, and are often integrated into security infrastructure. Similarly,
malwaredetection services (e.g., VirusTotal) check fornot only signa-
tures of previously-identified malicious content, but also suspicious
behavior through static and dynamic analyses. Thus, administrators
may desire to use such services to scan the external resources they
are linking to from their first-party site, whilemaintaining their own
cache of previously-scanned content to minimize API calls.

One method to minimize costs of external scanning is to check
files whose contents have changed, particularly for file types for
which SRI is not applicable, such as images and audio files. The
metadata of image files may be used for covert payload delivery or
data exfiltration. Malwarebytes has published a number of reports
detailing adversaries masquerading skimmers as favicons: in one
2020 incident, the favicon request URL would serve a web skimmer
if theword “checkout”was in the Referer header [41], and in another,
the skimmer payload was hidden in the EXIF metadata field of a
favicon [42]. In contrast, maliciously-crafted audio files may trigger
arbitrary code execution when browsers process them [9, 65].

This type of policy can also be designedwith heuristics to identify
common behavioral patterns in supply chain attacks, by leveraging
first-party knowledge and resources. For example, it is common

for obfuscated, malicious snippets of JavaScript to be injected into
otherwise-benign code, which is sometimes called a benign-append
attack in industry reports. In 2018, a common JavaScript library
loaded by 4,000 sites, many of which belonged to governments, was
injected with a cryptojacking snippet [12]; in 2019, an advertising
agency was compromised and delivered credit card skimmers to
277 e-commerce sites [29]; in 2023, 510WordPress sites were found
embedded with bridgehead code that retrieved second-stage fake
browser update payloads fromamalicious smart contract, effectively
leveraging the principles of blockchains to serve as bulletproof host-
ing [56]. In all of these incidents, obfuscated, malicious code was
injected into existing resources. Policies that leverage first-party
knowledge will knowwhether certain scripts were previously ob-
fuscated, or expected data values in analytics scripts (e.g., the ID
used by the Google Tag Manager loader script that determines what
further scripts are pulled into the site). Another targeted behavioral
pattern could be the tendency for attackers to reuse or revive older
infrastructure that have been previously marked suspicious; an in-
cident in 2020 involved a credit card skimmer that masqueraded as
a favicon, and the IP address of the domain that served the skimmer
had been flagged malicious three years prior [41].

5.4 Policy: Dependencies
Scriptsmay regularly contact different origins (or URLs) during their
execution. LiMS supports the ability to check for changes to the set of
URLs contacted by individual resources, as opposed to the granularity
of origins contacted by individual pages as offered by CSP. Consider
a scenario in which script foo.js has changed and contacts an origin
bar.com that it never contacted before. If bar.com is already contacted
by a different script on the page, and thus present on the CSP al-
lowlist, this issue may never be flagged to administrators without
LiMS. Or, it might be the case that foo.js contacts a different URL on
a domain bar.com that it has previously contacted. This would be
particularly concerning if bar.com allows for user-provided scripts
to be uploaded. For example, Google Tag Manager (GTM), a popular
analytics library, enables developers to host their own set of custom
scripts, differentiated by a single ID parameter in the URL and in a
variable in the initial loader script content. Adversaries are known
to abuse brand trust and change the parameter in the GTM script
URL that controls which scripts are loaded [1, 45, 52].

In production, this policy may not be readily applicable for URLs
that are dynamically generated. For example, if a third-party script
contacts dynamically-generated subdomains of a fourth party, the
policy may have to be adjusted to consider only the eTLD+1 instead
of the full domain name, if all subdomains are controlled by the same

What Gets Measured Gets Managed CCS ’25, October 13–17, 2025, Taipei, Taiwan

entity. However, if different subdomains redirect to different user-
controlled content, it would be prudent to consider the full domain
name.

5.5 Policy: SRI Violation Reporting
One challenge faced by web developers may be the lack of visibility
into silent errors encountered by visitors. For example, although
CSP offers a built-in reporting mechanism for resources that were
blocked because of violations, SRI does not.When a script is blocked
from loading because of an SRI violation, the browser only reports
the failure in its developer console. The closest feature to a report-
ing mechanism for SRI is a now-deprecated proposal to include
require-sri-for in CSP, which would block scripts without an SRI
integrity attribute and leverage CSP report-to [63].

Administrators can use a LiMS policy to ensure that scripts that
donotmatch their expected SRI digestswill provide violation reports
to administrators, in addition to providing the same functionality
as SRI if desired. Although it does not directly provide additional
integrity guarantees for users, it improves the ability for adminis-
trators to detect problems with critical resources, and thus minimize
the response time during attacks. Additional client-side errors that
might be of interest to developers are TLS connection errors for sub-
resources on the page —when the browser encounters such errors,
they are also only reported in the developer console.

5.6 Policy: Infrastructure Attributes
Depending on the application infrastructure and the domain con-
text, administrators may need to make policies that encode restric-
tions or business logic, such as where the physical remote servers
of dependencies are expected. For example, a common deployment
pattern geographically distributes hosting servers, and directs users
to servers that are physically close to their location to minimize la-
tency. In addition, security-conscious developers may be concerned
about dependencies from foreign countries for critical applications
(e.g., government websites), or connections to servers in unexpected
locations. A security analysis published in 2023 discusses malicious
JavaScript code that queried an Ethereum provider to retrieve a
second-stage domain from a malicious smart contract, which re-
solved to IP addresses located in a foreign country [56]. In another
security incident report in 2023, skimmers targeted sites across the
globe and exfiltrated data to a server located in Japan [58].

Asanexample, apolicy that checks infrastructure attributesmight
check the country of remote servers against a pre-defined allowlist
or blocklist, or compare its distance against a threshold as a means
to enforce a maximum distance restriction. Variations of this policy
can additionally check for suspicious indicators based on the DNS
responses to queries for the requested domain, such as the number
of distinct IP addresses or countries [3] or autonomous systems for
those IP addresses [2].

5.7 Policy: CMS Core File Integrity
Content management systems (CMS) comprise a significant fraction
of the websites deployed today — some sources report that over 75%
of the top 1M sites by traffic are built with CMS software [4]. Given
their prevalence, attackers frequently target sites that use CMS soft-
ware, and one of the common targets are the “core” files that are sent

to users (e.g., WordPress jQuery [20] and themes [51]), or encode
server-side logic (e.g., session management in Magento [24]).

For server-side file integrity checks, the verifier would require
access to the corresponding source files used by the web application.
In addition, the policy would need to reference another source to
obtain the expected content for core files, and compare it to the
content that is actually received by the client, or the content that
is actually present in the web application, respectively. This is in
contrast to SRI and CSP, which cannot help with server-side checks,
but can help perform client-side checks, provided the CMS software
supports their use. Further, content checks with SRI or CSP do not
apply to all file types that may be considered core CMS files.

6 Evaluation
To evaluate the performance overhead of our prototype, we imple-
mented a pipeline that simulated deployments by injecting LiMS
service worker registration scripts into responses from the server. In
this section, we evaluate the performance overhead of our LiMS pro-
totype, and evaluate the robustness of several proposed policy build-
ing blocks fromSection 5.We refer readers interested in the details of
our simulated deployment methodology and domain categorization
results to the extended version because of space constraints [47].

6.1 Domain Sample
We selected a representative sample of domains to be used in our
performance and policy evaluations. First, we obtained a ranked list
of the top one million domains from Tranco on September 18, 2024.
We divided the domains into high-,mid-, and low-ranking buckets of
increasing size, [1, 1K], (1K, 100K], and (100K, 1M) respectively. We
then randomly sampled 200 domains fromeachbucket. The resulting
sample contains domains that span a diverse array of services, with
the results in the extended version.We filtered the selected domains,
excluding 5 domains with adult content keywords, 132 domains for
which our crawler did not receive a response in 30 seconds, and 13
domains with existing service workers. The remaining 450 domains
were used in our performance evaluation, following the simulated
deployment methodology described in the extended version.

Request Patterns. Before discussing the evaluations in detail, we
characterize the inclusion patterns of the domains in our sample
from the perspective of a LiMS administrator by using the generated
data from our simulated deployments. For each domain, the median
number of external URLs that were requested is 197, number of ex-
ternal origins is 7, and number of URLs per external origin is 32. As
expected, third-party advertising and tracking sites are requested
very often, frommany of the domains in our sample.We observe that
googletagmanager.com is the most commonly-requested external ori-
gin,with170domains inour sample triggeringanaverageof 2unique
URLs to this externaloriginoneachvisit,witha totalof 1,247different
URLs encountered throughout our performance evaluation. This site
is responsible for delivering advertising-related scripts, based on the
URL parameter id that identifies the set of scripts to load. In contrast,
we also observed external origins thatwere used by only one domain
in our sample, but were requested with many unique URLs per visit.
We found that, on each visit, whatsapp.com requested, on average, 63
unique transient URLs fromwhatsapp.net, most ofwhichwere images
that return an errormessage outside a regular browsing session (e.g.,

CCS ’25, October 13–17, 2025, Taipei, Taiwan Johnny So, Michael Ferdman, & Nick Nikiforakis

Table 2: Different stages of the performance overhead evaluation
imposed by our prototype LiMS.

Stage OverheadMeasurement

No SW Baseline measurement with no SW
No-op SW No-op request interception with SW
No-op API Queries link status from no-op API
Full Queries link status from normal API

“BadURL timestamp/hash”). Similarly, sunsky-online.com triggered re-
quests for 20URLs tomyipadbox.com on average, but thesewere static
URLs that corresponded to images of their e-commerce inventory.

Takeaways. Domains in our sample are representative in terms of
ranking and categorization: our sampling methodology is designed
to represent low-, middle-, and high-ranked domains, and also to
select domains that serve a diverse array of functions. There is no
universally-applicable third-party resource inclusion pattern, and
we observe evidence of different request inclusion patterns in our
simulated deployments. As such, administrators must first under-
stand their existing third-party resources before writing policies.
The multi-stage deployment strategy of LiMS is expressly suited
to assist administrators in developing an understanding of existing
resources by allowing administrators to recognize URL patterns
and develop policies. Furthermore, it may be valuable to develop
common policies for commonly-included third parties; for example,
policies designed for Google Tag Manager may be attractive to site
administrators and ease adoption of systems like LiMS.

6.2 Performance Overhead
We conducted our performance evaluation on the 450 domains by
simulating the deployment of LiMS detailed in the extended version,
which injects service worker registration scripts in server responses.
Next, we measured the overall page load times while progressively
activating more components of LiMS to analyze the overhead con-
tributed by each one, under varying network speeds. Table 2 sum-
marizes the different stages of this incremental activation process,
starting with a baseline measurement with no SW, and progressing
to a full activation with normal LiMS functionality.

The overhead measurements are reported as median page load
times in a series of bar charts in Figure 2. Each of the plots represents
a different network configuration, with the left half denoting the
median page load times on the first visit, and the right half denoting
those for subsequent (second) visits. Each domain is visited 30 times
for each combination of the network configuration and the evalu-
ation stage, and the median of these is taken to be the page load time
for that domain under those conditions. From the 450 domains after
prefiltering, an additional 54 were filtered out because they were
missing data for at least one evaluation stage, which were caused by
transient failures of the evaluation infrastructure (e.g., unresponsive
browsers on evaluation workers) and transient network issues (e.g.,
timeouts when connecting to the website). The height of each bar
in a plot corresponds to the median of the page load times across all
remaining 394 domains for the corresponding evaluation stage. For
example, in the 5G low-band network profile, the median page load
time across the 394 domains is 1.77 seconds in the No SW stage.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ad

 T
im

e
(s

)

1.87 1.93 2.09 2.12

Unthrottled Loads

0.76 0.76 0.60 0.60

Unthrottled Reloads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ad

 T
im

e
(s

) 2.13 2.31
2.54 2.53

Wi-Fi Loads

0.74 0.75 0.62 0.60

Wi-Fi Reloads

No SW
No-op SW

No-op API Full
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ad

 T
im

e
(s

)

1.77 1.93
2.14 2.03

5G Low-band Loads

No SW
No-op SW

No-op API Full

0.68 0.67 0.51 0.50

5G Low-band Reloads

Median Time to Page Load at Different Bandwidths

Figure 2: Bar charts depicting the total overhead for users introduced
by the LiMS prototype implementation.

If we instead consider the 90th percentile of load time overhead,
the resulting plot is very similar to Figure 2, except that times are a
few hundred milliseconds larger. At the 99th percentile, the same is
true, but with greater overhead for load times that take over 2× com-
pared to the 50th percentile of loads (e.g., WiFi has a 2.13s baseline
and2.53s total at the 50thpercentile, compared to a 4.92s baseline and
6.26s total at the 99th percentile). Although we did not measure the
execution time for each policy verification, proactive re-execution
of policy checks can warm the verification cache, preventing user
requests from triggering expired policy verifications and improving
user experience as mentioned in Section 3.3.

Takeaways. In each of the three network configurations, we ob-
serve that the overhead introduced at the last two evaluation stages
are significantly higher than the overhead introduced at the No-op
SW stage. This alignswith expectations: No-op SW does not introduce
any additional network communication,whereas the No-op API and
Full stages do on the first load of a page. The overhead introduced
by a no-op service worker that intercepts requests, and immediately
returns from the intercept handler, is 60 ms, 180 ms, and 160 ms for
the three network profiles. In contrast, the overall, additional over-
head to the median first load time is 250 ms, 400 ms, and 260 ms for
the unthrottled,Wi-Fi, and 5G low-band speeds respectively. Despite
this, the additional overhead is within the generally-accepted range
for performant UI response times [15].

What Gets Measured Gets Managed CCS ’25, October 13–17, 2025, Taipei, Taiwan

In contrast to the first page load times, the median page reload
times are unusual: the median page reload times for the last two
stages are lower than those for the first two. On the second load,
the No-op API and Full service worker does not perform any addi-
tional network requests: it will consult its local cache and allow the
request to pass through. Thus,wehypothesize that this phenomenon
is caused by subtle differences in browser behavior when a service
worker’s request interception logic is not empty, as this phenome-
non does not manifest for the No-op SW reload measurements. In
short, the actual overhead for reloading pages for No-op API and
Full should be similar to No-op SW, as the only additional work
introduced is the SW checking its local cache.

In summary, intercepting requests with a service worker intro-
duced 60 ms, 180 ms, and 160 ms total overhead to the median page
first load time across the three different network profiles. Full opera-
tion introduced 250 ms, 400 ms, and 260 ms overhead to the median
page first load time for the unthrottled, Wi-Fi, and 5G low-band
speeds respectively. Additionally, the overhead on subsequent visits
with policies that do not need to be re-verified is negligible.

6.3 Policy Evaluation
LiMS also offers a unique vantage point for administrators to an-
alyze their site: even without custom policies, default policies (§5)
can present new insights into the dependency usage of a web appli-
cation. We discuss several ways that administrators, who may not
have the expertise to write customized and robust integrity policies,
can use LiMS. In particular, we demonstrate how LiMS can provide
insights into dependency usage and generate thresholds for several
default policies for a site. The following analyses are performed by
components of the open-sourced artifact accompanying this text.

6.3.1 Data Source. To quantify this discussion,we leverage the data
archivedby theCommonCrawl (CC)project [8] to emulate longitudi-
nal analyses. TheCCproject periodically archives thewebwith their
crawlers andprovides its data forpublicuse inan index definedby the
year and theweek inwhich the crawlwasfinished (e.g., 2024-42 refers
toweek 42 in the year 2024).Weused 10 contiguous indices spanning
approximately 54 weeks from the index 2023-40 to 2024-42, in order
to analyze the links present on domains in a longitudinal manner.

For each index, we attempted to download the corresponding
snapshot of the landing page of each domain in the sample from
Section 6.2, and extracted all the links in the HTML of the landing
page. We filtered this data so that we only consider the 85 domains
that were successfully crawled and archived in all 10 snapshots. Var-
ious factors contribute to this low number, with the most prominent
being that sitesmay explicitly forbid the CC bots from crawling their
site, present an HTTP 301 response that redirects to another URL
that was not successfully archived (e.g., example.com redirects to the
URLwww.example.comwhich was not archived), or were not online
or crawled at the time. Regardless, the remaining 85 constitute a
reasonable sample for this discussion.

6.3.2 Policy: Domain Lifecycle. Figure 3 depicts the thresholds that
would be necessary to use the policy described in Section 5.1 on
a subset of the 85 domains from the CC dataset. In particular, for
each domain at every CC index, we aggregated the eTLD+1 of all

2023-40 2024-10 2024-22 2024-30 2024-38
Index

102

103

Da
ys

Days Since Most-Recently Registered eTLD+1

Domain (10)
finn.no
hubspot.com
icfes.gov.co
klaviyo.com
kottke.org
loc.gov
prensa.com
typeform.com
universal.com.do
usps.com

Figure 3: Number of days since the most recent registration of all
linked eTLD+1 domains.

linked domains on its landing page, and used a commercial pas-
sive DNS database [10] to identify the approximate date when each
eTLD+1 domain was registered by using similar methodology as
other studies for passive DNS analyses [49]. Then, we approximated
the date corresponding to the CC index by taking the first day of the
specified week, with weeks corresponding to the ISO 8601 defini-
tion [13]. Afterwards, for each of the 85 domains, we computed the
number of days since the registration of themost recently registered
eTLD+1 among its links. 45 of the domains exhibited monotonically
increasing behavior, indicating they never included a newer eTLD+1.

We observe two main patterns in Figure 3, which plots a sam-
ple of the 40 remaining domains. The first is that there is a general
monotonically-increasing trend for each domain, indicating that
domains do not continuously add recently-registered domains to
their supply chain. This supports the use of the corresponding policy
discussed in Section 5.1, which restricts the use of newly-registered
domains. There is one notable exception displayed in the plot: kottke
.org. This domain hosts one of the oldest blogs on theweb [21] and by
its nature, includes links to a multitude of other domains on its land-
ing page, resulting in erratic fluctuations with no discernible trend.
The second pattern is that most domains, after including a domain
that was more recently registered than all other domains in their
supply chains, continue with the general monotonically-increasing
trend. This suggests that the domains only periodically include such
new domains, thereby implying that if the domain lifecycle policy
were deployed, it does not require frequent updates to the threshold.

In fact, the threshold for the duration of time since registration
of linked eTLD+1 domains can be automatically and incrementally
raised, making it more difficult for adversaries to introduce new
domains. If administrators desire to add a new domain, they can
temporarily lower the threshold, before continuing to harden the
policy threshold. We observe that most domains linked to newer
eTLD+1s when introducing new services (e.g., usps.com linking to
uspssmartpackagelockers.com 424 days after its registration and
universal.com.do linking to asistenciauniversal.om.do only 14 days
after its registration), or temporal content (e.g., loc.gov linking to
blackhistorymonth.gov in February, approximately 1,011 days after
its registration). In the former case, these domains generally keep
these services, and this behavior will manifest as a sudden drop and

CCS ’25, October 13–17, 2025, Taipei, Taiwan Johnny So, Michael Ferdman, & Nick Nikiforakis

2023-40 2024-18 2024-30 2024-42
Index

101

102

103

104

105

106

107

Lo
we

st
 R

an
k

Lowest-Ranked eTLD+1

2023-40 2024-18 2024-30 2024-42
Index

... Excluding Unranked

Domain (10)
barandbench.com
bing.com
childhelp.org
kottke.org
loc.gov
openstreetmap.org
target.com
thegoalchaser.com
waiverelectronic.com
zoom.us

Figure 4: The lowest-ranked domains of all linked eTLD+1 domains.
The left plot imputes a default rank for unranked domains, whereas
the right excludes them. The dashed line represents the Tranco top 1M.

gradual increase in theplot. In the latter case, thesedomainsgenerally
remove these linked eTLD+1s after a certain time window, and this
behavior will manifest as a sudden drop, a sudden increase to the
same level before the drop, and then continue to gradually increase.

6.3.3 Policy: Domain Ranking. We conduct a similar analysis to
examine the feasibility of the policy discussed in Section 5.2. Using
the approximate dates for each CC index as previously described,
we download the Tranco top 1M ranking list generated on those
days, and look up the ranking for each of the eTLD+1 domains that
were linked on the landing pages of the 85 CC domains. Figure 4
depicts the results for a sample of the 20 domains that experienced
significant changes in their trends, through two perspectives: the
left plot, which includes unranked domains by imputing a default
rank value of 107, and the right, which excludes them.

We observe several patterns in Figure 4 that are similar to those in
Figure 3. Thefirst is that the exclusion of unranked domains yields an
approximately constant trend for domains that do not introduce new,
lower-ranked eTLD+1s. As domains may experience slight changes
from one day to the next, the trends will appear approximately
constant with slight fluctuations. The second pattern is that when
domains introduce domains for new services, these are usually un-
ranked as thedomains themselves arenew, butmaybecome ranked if
they are kept for extended periods of time (e.g., childhelp.org linked
to childhelphotline.org since 2023-40, and it was finally ranked 995K
on 2024-33). If the lowest-ranked is instead removed, then it will
present the opportunity to significantly harden the ranking thresh-
old (e.g., bing.com which removed takelessons.com after 2024-30
and start.gg after 2024-33). Alternatively, if the new linked eTLD+1s
correspond to temporal content, theymay be removed from themain
site before they appear on ranking lists (e.g., loc.gov linked to the un-
ranked jewishheritagemonth.gov on only 2024-22). Regardless of the
scenario, administrators canmanage the domain ranking policy sim-
ilarly to the domain lifecycle policy. When new domains are added
or removed, the policy threshold, or policy-specific exceptions, can
be adjusted, before continuing to gradually harden the threshold.

6.3.4 Summary. Overall, the archived CC snapshots of these do-
mains support the feasibility of the domain lifecycle and domain

ranking policies from Section 5. Although we are unable to evalu-
ate the remaining policy building blocks with CC data, or evaluate
howwell they detect new attacks, we argue that integrity policies
in LiMS can provide customizable integrity guarantees in flexible
manners, and there exist general policies (e.g., the domain lifecycle
and domain ranking) that add valuable protections for users that
existing integrity mechanisms cannot.

7 RelatedWork
Toour knowledge, there exists nootherwork that introduces the con-
cept of granular and flexible integrity policies and an automatic en-
forcement system that can provides integrity guarantees for clients
by blockingnetwork requests to resourceswhose configuredpolicies
are violated. Prior works have introduced the notion of integrity to
resources, such as newer versions of Content Security Policy (CSP)
and Subresource Integrity (SRI), but the goals, flexibility, and design
of such methods are significantly different. This paper marks the
first attempt in extending the traditional notion of data integrity
in flexible ways that are more fitting for the modern web, enabling
integrity to be applied to different dimensions. Further, we provide
open source prototype implementations, and evaluate them, as part
of this work to hopefully foster more research in this area. In the rest
of this section, we discuss prior works that introduce link integrity
guarantees, security policies, and malicious JavaScript detection.

Content Security Policy. CSP is themost closely relatedwork to the
systemproposed in this paper. Originally proposed to defend against
Cross-Site Scripting (XSS) attacks [53], it adds an HTTP header that
can be included by servers to define allowlists of trusted origins for
different resource types, such as scripts, media, and images, on indi-
vidual pages. Browsersmust check all network requests tomake sure
that the origin of the request URL is included in applicable policies,
if specified. If violations are found, browsers generate and send a
report to a preconfigured server in the policy header, and can block
the request if the policy is configured in the enforcement mode. In
summary, CSP can be used to restrict the resources that are loaded
on individual pages to predefined sets of trusted origins. Furthermore,
extensions to its standard have enabled mechanisms to verify the
authenticity of inline scripts via nonces and content hashes [64].

The first major difference between the two systems — besides the
fact that policies are verified by the browser in CSP, and by a client
serviceworker in LiMS— is the threatmodel, and subsequentlywhat
is considered to be trusted. CSP originally considers a resource to be
trusted if and only if the resource is loaded from an explicit allowlist
of origins. In short, CSP trusts certain origins, or exact file contents.
LiMS is concerned with defending against supply chain attacks. The
concept of integrity is much more flexible and is reflected in the
generalizability of integrity policies. In short, LiMS trusts in more
dimensions than the origin of the provider and exact file contents, in-
cluding resource behavior, request context, and location information.
Thus, the set of integrity dimensions afforded byCSP is a strict subset
of that of LiMS, but this does not mean that LiMS provides the same
set of e.g., XSS protections from CSP.

The other major difference relates towhen and where policies are
verified. In CSP, policies are verified by the browser which has re-
ceived the set of policies for the current page in theHTTPheaders. In

What Gets Measured Gets Managed CCS ’25, October 13–17, 2025, Taipei, Taiwan

LiMS, policies are verified on demand by dedicated server-sidework-
ers that cache decisions for all users. Separating the component that
performs the actual verification from the browser enables LiMS to use
complex policies and cache its verification decisions for reuse among
all users, minimizing the overhead imparted to any individual user.

Subresource Integrity. SRI is another existing standard that pro-
vides integrity guarantees ofweb resources. In contrast to CSP, SRI is
expressly designed to combat this problem, and it does so by defining
a new attribute in the HTML script tag that specifies the expected
hash value(s) for the content of the script [61]. This enables user
agents to compare the hash value of the received content against the
hash value of the content that is expected, loading received content
if and only if the hash (if specified) matches.

In the same vein as CSP integrity, such guarantees are strict by
nature and do not allow any type of change in content, regardless of
the scope of the change. Prior work has empirically shown that strict
integrity is not a good fit to ensure the integrity of JavaScript, one
of the primary resource types on the web. Steffens et al. found that
high-profile parties randomize select parts of their scripts, rendering
it impossible to apply SRI for them [54]. Similarly, So et al. reported
that even if every static script were protected with SRI, it would not
provide the intended security guarantees because sites often retrieve
both static and non-static scripts from third-party origins [46].

The lack of adoption of SRI seems to agree with these studies that
challenge the usability and practicality of strict integrity verification.
SRI was first proposed as a standard in 2016 by theWorldWideWeb
Consortium [61], andmultiple studies conducted over the years have
found the adoption rate to be low. Kumar et al. [22] and Shah and
Patil [43] both found that less than 1% of sites use SRI in 2017 and
in 2018 respectively. Chapuis et al. [5] reported that the adoption
had increased to 3.4% of all webpages in 2020 in a longitudinal study
with a much larger sample size.

Security Policies. There are a number of prior works that intro-
duce security policies for the web, aside from CSP, to guarantee
that JavaScript execution is limited to trusted code. One of the
first proposals by Jim et al. to defend against cross-site scripting,
Browser-Enforced Embedded Policies (BEEP), introduced the notion
of website-defined security policies to be used by the browser to
determinewhich scripts are allowed to run [16].Another proposal by
Oda et al. reimaginedweb resource usage permissions if cross-origin
communications were required to be mutually approved, finding
that it would defend against otherwise-successful cross-site script-
ing (XSS) and request forgery (XSRF) attacks [33]. Other works
proposed policy systems that acted directly on JavaScript. Reis et
al. proposed Browsershield, a system that intercepts and rewrites
JavaScript code subject to site-defined execution policies, aims to
avoid executing code that exploits web browser vulnerabilities [36].
Similarly, Meyerovich and Livshits proposed Conscript to grant
browsers the ability to enforce fine-grained security policies for
JavaScript, effectively adding constraints to the code during execu-
tion [28]. Phung et al. proposed FlashJaX, a cross-language inline ref-
erence monitor that enforced security policies on third-party, mixed
JavaScript and ActionScript content [34], which also used a robust
client-side mechanism that did not require browser modifications.

When these designs were proposed more than a decade ago, the
primary security incidents were XSS, XSRF, and web browser vul-
nerabilities, and their considered threat models accordingly reflect
this. As such, these systems do not immediately align in the threat
model of supply chain attacks where users may receive unexpected
or malicious content from trusted origins.

JavaScript Integrity. A different line of related work studies the
feasibility of different integrity schemes for JavaScript in terms of
producing signatures and fingerprints with program analysis. LiMS
is a system designed to offer flexible integrity policies, and an ideal
policy would compare the signature or fingerprint of a script against
a configured allowlist, using a signature or fingerprint scheme that
is robust even in the presence of content changes.

It has proven difficult to produce such a robust, general signature
scheme. Strict integrity schemes such as those created by Nakhaei
et al. [32] andMignerey et al. [30] do not address the threat model
or require adding a new component to the web public key infrastruc-
ture. Soni et al. [50] andMitropoulos et al. [31] offered novel, relaxed
integrity schemes to generate structural signatures and contextual
script fingerprints respectively. However, a recent study by So et
al. found that these relaxed integrity schemes are unstable in the
context of modern web scripts [46].

8 Discussion
This text introduces the concept of integrity policies, an application-
agnostic design of a corresponding verification and enforcement sys-
tem to prevent supply chain attacks, and basic, yet efficient, policies
that can be readily implemented and enforced based on commonal-
ities from recent security incidents. Furthermore, we evaluate the
overall overhead introduced by our prototype LiMS in the form of
page load times for simulated deployments, and evaluate several pro-
posed policies, finding that our prototype LiMS introduced minimal
overhead, and that policies can serve as building blocks.

8.1 Limitations
Despite the advantages, there are inherent limitations of our design:
LiMS will not be able to intercept WebSocket traffic. Additionally,
the LiMS client will also be susceptible to any exploits that leverage
the service worker design and implementation (e.g., privacy sniff-
ing [18]). Also, server-side integrity policy verification introduces
a non-trivial problem: server-side workers are verifying that remote
resources are safe on behalf of clients. There is no guarantee that the
server-side workers will receive the same responses as clients. Thus,
it may be the case that cloaking of a compromised resource may be
able to bypass an integrity policy. Further, policies that are robust in
the face of content updates may be difficult to write, but there may
be better-fitting policies that check the integrity of other dimensions
for such resources. In addition, the evaluation of our prototype did
not take into consideration the execution time of policies, but the
overhead is negligible when verifications are performed periodically
by verifiers that do not block the request flow. Our evaluation also
did not take into consideration the latency between the client and the
LiMS server, but techniques such as load-balancing and distribution
of hosting servers are expressly designed to tackle this problem.

Additionally, as with all deployed applications, a deployment of
LiMS increases the attack surface as the number of nodes in the

CCS ’25, October 13–17, 2025, Taipei, Taiwan Johnny So, Michael Ferdman, & Nick Nikiforakis

organization’s infrastructure itself will increase. In addition, policy
writers will need to cautiously use external libraries, as it may be
possible to induce a supply chain attack on a LiMS verifier that relies
on external code. However, we remark that the addition of LiMS does
not introduce any additional, significant attack surface to website
visitors. An attacker that canmaliciously modify the LiMS client ser-
viceworker itselfwould also be capable ofmodifying anyof the other
first-party content, or injecting their ownmalicious service worker.

8.2 Design Considerations
The prototype LiMS which we introduce in this work has a number
of different aspects that can be adjusted. One area is the choice of
server-side policy verification — an alternate implementation can
include client-side verification for non-content-related policies (be-
cause service workers cannot access the contents of cross-origin
responses), or directly enable support for content-related policies by
implementing the enforcement logic in the browser. This is beneficial
because client-side verification guarantees that policies will be ver-
ified on the responses that clients receive. By delegating verification
to a server-side component, policies must avoid depending on user-
specific information in resource requests. However, as previously
mentioned, client-side verification may not be ideal as we suspect
that it will introduce significant overhead for users, and the current
implementation is sufficient for a working prototype.

Another area that can be optimized is the verification protocol
between the client SW and the API server. As each newly-observed
resource triggers an additional network request in the prototype, it
is likely that minimizing the overhead of communications can dras-
tically minimize the overall delay. One method to achieve this is to
modify theAPI server to eagerly respond to navigation requestswith
the status of resources that are expected to load on the first-party
page, or to move the client SW and the API server communication
to aWebSocket channel to reduce the overhead of TLS handshakes.

Lastly, additional features can be readily incorporated into LiMS.
One feature involves leveraging push subscriptions to send notifica-
tions from the server to users, granting the ability to force cache re-
freshesupon failedor revokedverifications, andalso remove theneed
for the client serviceworker to regularly poll theAPI server. Another
feature thatwouldprove tobeuseful is toaddsupport to track thecon-
tents of resources to enable longitudinal analyses of content changes
for administrators to review when, and how, resources change.

9 Conclusion
In this paper, we introduced the concept of granular and flexible in-
tegrity policies that declare the (un)expected properties of resources
in different dimensions, and the application-agnostic design of a
corresponding verification and enforcement system LiMS. In the
design of LiMS, policy verification is performed by dedicated server-
side workers who cache decisions for reuse among all users, and
policy enforcement is upheld in the form of a service worker that is
installed in user browsers. We also introduce universally-applicable
integrity policies to serve as building blocks for a comprehensive
set of integrity policies and discuss how they could have prevented
recent supply chain attacks reported in the industry. Finally, we
implemented an open-source prototype of LiMS and found that it
adds minimal performance overhead and no loss of functionality to

first-party applications during a systematic evaluation of the over-
head introduced by the different components. The overall overhead
encountered during the first load of a page is several hundred mil-
liseconds, and there is negligible overhead during subsequent loads,
for each of the tested network configurations. We also examine the
feasibility of several proposed policy building blocks, finding that
they suit the dependency usage patterns of sites and would incur
minimal overhead for administrators.

Acknowledgments
We thank the reviewers for their helpful comments. This work was
supportedby theOfficeofNavalResearch (ONR)undergrantN00014-
24-1-2193 as well as by the National Science Foundation (NSF) under
grants CNS-1941617, CNS-2126654, and CNS-2211575.

References
[1] Cesar Anjos. 2018. Malicious Activities with Google Tag Manager.

https://blog.sucuri.net/2018/04/malicious-activities-google-tag-manager.html
[2] Manos Antonakakis, Roberto Perdisci, David Dagon, Wenke Lee, and Nick

Feamster. 2010. Building a dynamic reputation system for {DNS}. In 19th USENIX
Security Symposium (USENIX Security 10).

[3] Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Balduzzi. 2011. EX-
POSURE: Finding Malicious Domains Using Passive DNS Analysis. In Proceedings
of the Network and Distributed Systems Security (NDSS) Symposium 2011. 1–17.

[4] BuiltWith. [n. d.]. CMS technologies Web Usage Distribution. h t tp s :
//trends.builtwith.com/cms

[5] Bertil Chapuis, Olamide Omolola, Mauro Cherubini, Mathias Humbert, and Kévin
Huguenin. 2020. Anempirical studyof theuse of integrity verificationmechanisms
for web subresources. In Proceedings of TheWeb Conference 2020. 34–45.

[6] Joseph Chen. 2019. Mirrorthief Hits Campus Online Stores Using Magecart.
https://www.trendmicro.com/en_us/research/19/e/mirrorthief-group-uses-
magecart-skimming-attack-to-hit-hundreds-of-campus-online-stores-in-us-
and-canada.html

[7] Cloudflare. [n. d.]. How website performance affects conversion rates.
https://www.cloudf lare.com/learning/perf ormance/more/website-
performance-conversion-rates/

[8] Common Crawl. 2024. Common Crawl. https://commoncrawl.org
[9] National Vulnerability Database. 2020. NVD - CVE-2020-27948 Detail.

https://nvd.nist.gov/vuln/detail/cve-2020-27948
[10] farsightdnsdb [n. d.]. Passive DNS historical internet database: Farsight DNSDB.

https://www.farsightsecurity.com/solutions/dnsdb/
[11] Sergiu Gatlan. 2019. Keyloggers Injected inWeb Trust Seal Supply Chain Attack.

https://www.bleepingcomputer.com/news/security/keyloggers-injected-in-
web-trust-seal-supply-chain-attack/

[12] Scott Helme. 2023. 5 Years On: What did we learn from the Government
Cryptojacking Attack? https://scotthelme.co.uk/5-years-on/

[13] International Organization for Standardization. 2019. ISO 8601:2019 - Date and
time format. https://www.iso.org/standard/70907.html

[14] Luca Invernizzi, Kurt Thomas, Alexandros Kapravelos, Oxana Comanescu,
Jean-Michel Picod, and Elie Bursztein. 2016. Cloak of visibility: Detecting when
machines browse a different web. In 2016 IEEE Symposium on Security and Privacy
(SP). IEEE, 743–758.

[15] Nielsen Jakob. 1993. Response Times: The 3 Important Limits. (1993).
https://www.nngroup.com/articles/response-times-3-important-limits/

[16] Trevor Jim, Nikhil Swamy, and Michael Hicks. 2007. Defeating script injection
attacks with browser-enforced embedded policies. In Proceedings of the 16th
international conference onWorldWideWeb. 601–610.

[17] Jscrambler. 2022. Defcon Skimming: A new batch of Web Skimming attacks.
https://jscrambler.com/blog/defcon- skimming-a-new-batch-of -web-
skimming-attacks

[18] Soroush Karami, Panagiotis Ilia, and Jason Polakis. 2021. Awakening the web’s
sleeper agents: Misusing service workers for privacy leakage. In Network and
Distributed System Security Symposium.

[19] YonathanKlijnsmaand JordanHerman. 2018. InsideandBeyondTicketmaster:The
Many Breaches of Magecart. https://web.archive.org/web/20181221151431/https:
//www.riskiq.com/blog/labs/magecart-ticketmaster-breach/

[20] Krasimir Konov. 2022. Massive WordPress JavaScript Injection Campaign
Redirects to Ads. https://blog.sucuri.net/2022/05/massive-wordpress-javascript-
injection-campaign-redirects-to-ads.html

[21] Jason Kottke. [n. d.]. About kottke.org. https://kottke.org/about/

https://blog.sucuri.net/2018/04/malicious-activities-google-tag-manager.html
https://trends.builtwith.com/cms
https://trends.builtwith.com/cms
https://www.trendmicro.com/en_us/research/19/e/mirrorthief-group-uses-magecart-skimming-attack-to-hit-hundreds-of-campus-online-stores-in-us-and-canada.html
https://www.trendmicro.com/en_us/research/19/e/mirrorthief-group-uses-magecart-skimming-attack-to-hit-hundreds-of-campus-online-stores-in-us-and-canada.html
https://www.trendmicro.com/en_us/research/19/e/mirrorthief-group-uses-magecart-skimming-attack-to-hit-hundreds-of-campus-online-stores-in-us-and-canada.html
https://www.cloudflare.com/learning/performance/more/website-performance-conversion-rates/
https://www.cloudflare.com/learning/performance/more/website-performance-conversion-rates/
https://commoncrawl.org
https://nvd.nist.gov/vuln/detail/cve-2020-27948
https://www.farsightsecurity.com/solutions/dnsdb/
https://www.bleepingcomputer.com/news/security/keyloggers-injected-in-web-trust-seal-supply-chain-attack/
https://www.bleepingcomputer.com/news/security/keyloggers-injected-in-web-trust-seal-supply-chain-attack/
https://scotthelme.co.uk/5-years-on/
https://www.iso.org/standard/70907.html
https://www.nngroup.com/articles/response-times-3-important-limits/
https://jscrambler.com/blog/defcon-skimming-a-new-batch-of-web-skimming-attacks
https://jscrambler.com/blog/defcon-skimming-a-new-batch-of-web-skimming-attacks
https://web.archive.org/web/20181221151431/https://www.riskiq.com/blog/labs/magecart-ticketmaster-breach/
https://web.archive.org/web/20181221151431/https://www.riskiq.com/blog/labs/magecart-ticketmaster-breach/
https://blog.sucuri.net/2022/05/massive-wordpress-javascript-injection-campaign-redirects-to-ads.html
https://blog.sucuri.net/2022/05/massive-wordpress-javascript-injection-campaign-redirects-to-ads.html
https://kottke.org/about/

What Gets Measured Gets Managed CCS ’25, October 13–17, 2025, Taipei, Taiwan

[22] Deepak Kumar, Zane Ma, Zakir Durumeric, Ariana Mirian, Joshua Mason, J Alex
Halderman, and Michael Bailey. 2017. Security challenges in an increasingly
tangled web. In Proceedings of the 26th International Conference on World Wide
Web. 677–684.

[23] LinkSentry: Link Auditing. 2025. From the Ivory Tower, to Putting It All on Red.
https://linksentry.io/blog/from-the-ivory-tower-to-putting-it-all-on-red

[24] BenMartin. 2021. Magecart Swiper Uses Unorthodox Concatenation. https://bl
og.sucuri.net/2021/07/magecart-swiper-uses-unorthodox-concatenation.html

[25] MDNContributors. 2023. ServiceWorker - Web APIs | MDN. h t t p s :
//developer.mozilla.org/en-US/docs/Web/API/ServiceWorker

[26] Gal Meiri. 2020. A New Skimmer UsesWebSockets and a Fake Credit Card Form
to Steal Sensitive Data. https://www.akamai.com/blog/security/a-new-skimmer-
uses-websockets-and-a-fake-credit-card-form-to-steal-sensitive-data

[27] Gal Meiri. 2024. Examining the Polyfill Attack from Akamai’s Point of View.
https://www.akamai.com/blog/security/2024-polyfill-supply-chain-attack-
what-to-know

[28] Leo A Meyerovich and Benjamin Livshits. 2010. ConScript: Specifying and
enforcing fine-grained security policies for Javascript in the browser. In 2010 IEEE
Symposium on Security and Privacy. IEEE, 481–496.

[29] Trend Micro. 2019. Magecart Delivered Via Advertising Supply Chain.
https://www.trendmicro.com/en_us/research/19/a/new-magecart-attack-
delivered-through-compromised-advertising-supply-chain.html

[30] Josselin Mignerey, Cyrille Mucchietto, and Jean-Baptiste Orfila. 2020. Ensuring
the Integrity of OutsourcedWeb Scripts. In ICETE (2). 155–166.

[31] DimitrisMitropoulos, Konstantinos Stroggylos, Diomidis Spinellis, andAngelos D
Keromytis. 2016. How to train your browser: Preventing XSS attacks using
contextual script fingerprints. ACM Transactions on Privacy and Security (TOPS)
19, 1 (2016), 1–31.

[32] Kousha Nakhaei, Fateme Ansari, and Ebrahim Ansari. 2020. JSSignature: elim-
inating third-party-hosted JavaScript infection threats using digital signatures.
SN Applied Sciences 2, 1 (2020), 1–11.

[33] Terri Oda, GlennWurster, Paul C van Oorschot, and Anil Somayaji. 2008. SOMA:
Mutual approval for included content in web pages. In Proceedings of the 15th
ACM conference on Computer and communications security. 89–98.

[34] Phu H Phung, Maliheh Monshizadeh, Meera Sridhar, KevinWHamlen, et al. 2014.
Betweenworlds: Securingmixed JavaScript/ActionScriptmulti-partyweb content.
IEEE Transactions on Dependable and Secure Computing 12, 4 (2014), 443–457.

[35] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej
Korczyński, andWouter Joosen. 2019. TRANCO: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation. In Proceedings of the Network and
Distributed Systems Security (NDSS) Symposium 2019.

[36] Charles Reis, John Dunagan, Helen JWang, Opher Dubrovsky, and Saher Esmeir.
2007. BrowserShield: Vulnerability-driven filtering of dynamic HTML. ACM
Transactions on theWeb (TWEB) 1, 3 (2007), 11–es.

[37] Sebastian Roth, Timothy Barron, Stefano Calzavara, Nick Nikiforakis, and Ben
Stock. 2020. Complex security policy? a longitudinal analysis of deployed content
security policies. In Proceedings of the 27th Network and Distributed System
Security Symposium (NDSS).

[38] Alex Russell and Jungkee Song. 2022. Service Workers. h t t p s :
//www.w3.org/TR/service-workers/

[39] Matthew Schwartz. 2020. Ticketmaster Fined $1.7 Million for Data Security
Failures. https://www.bankinfosecurity.com/ticketmaster-fined-17-million-
for-data-security-failures-a-15369

[40] Jérôme Seguar. 2019. New evasion techniques found in web skimmers.
https://www.malwarebytes.com/blog/news/2019/12/new-evasion-techniques-
found-in-web-skimmers

[41] Jérôme Seguar. 2020. Credit card skimmer masquerades as favicon.
https :/ /www.malwarebytes .com/blog/news/2020/05/credit- card-
skimmer-masquerades-as-favicon

[42] Jérôme Seguar. 2020. Web skimmer hides within EXIF metadata, exfiltrates credit
cards via image files. https://www.malwarebytes.com/blog/news/2020/06/web-
skimmer-hides-within-exif-metadata-exfiltrates-credit-cards-via-image-files

[43] Ronak Shah and Kailas Patil. 2018. A measurement study of the subresource
integrity mechanism on real-world applications. International Journal of Security
and Networks 13, 2 (2018), 129–138.

[44] João Marco Silva, Diogo Ribeiro, Luis Felipe Ramos, and Vítor Fonte. 2024. A
worldwide overview on the information security posture of online public services.
In Proceedings of the 57th Hawaii International Conference on System Sciences.

[45] Denis Sinegubko. 2023. 40 New Domains of Magecart Veteran ATMZOW Found
in Google Tag Manager. https://blog.sucuri.net/2023/12/40-new-domains-of-
magecart-veteran-atmzow-found-in-google-tag-manager.html

[46] Johnny So, Michael Ferdman, and Nick Nikiforakis. 2023. The More Things
Change, the More They Stay the Same: Integrity of Modern JavaScript. In
Proceedings of the ACMWeb Conference 2023. 2295–2305.

[47] Johnny So, Michael Ferdman, and Nick Nikiforakis. 2025. What Gets Mea-
sured Gets Managed: Mitigating Supply Chain Attacks with a Link Integrity
Management System. arXiv preprint (2025).

[48] Johnny So, NajmehMiramirkhani, Michael Ferdman, and Nick Nikiforakis. 2022.
Domains Do Change Their Spots: Quantifying Potential Abuse of Residual Trust.
In 2022 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, Los
Alamitos, CA, USA, 119–133. doi:10.1109/SP46214.2022.00008

[49] Johnny So, Iskander Sanchez-Rola, and Nick Nikiforakis. 2025. Lost in the Mists
of Time: Expirations in DNS Footprints of Mobile Apps. In Proceedings of the
34th USENIX Security Symposium (2025). https://johnny.so/publication/so-2025-
lost/so-2025-lost.pdf (to appear).

[50] Pratik Soni, Enrico Budianto, and Prateek Saxena. 2015. The SICILIAN defense:
Signature-based whitelisting of web JavaScript. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. 1542–1557.

[51] Puja Srivastava. 2025. Cascading Redirects: Unmasking a Multi-Site JavaScript
Malware Campaign. https://blog.sucuri.net/2025/03/cascading-redirects-
unmasking-a-multi-site-javascript-malware-campaign.html

[52] Puja Srivastava. 2025. Google TagManager Skimmer Steals Credit Card Info From
Magento Site. https://blog.sucuri.net/2025/02/google-tag-manager-skimmer-
steals-credit-card-info-from-magento-site.html

[53] Sid Stamm, Brandon Sterne, and Gervase Markham. 2010. Reining in the web
with content security policy. In Proceedings of the 19th international conference
onWorld wide web. 921–930.

[54] Marius Steffens,MariusMusch,Martin Johns, and Ben Stock. 2021. Who’s Hosting
the Block Party? Studying Third-Party Blockage of CSP and SRI. InNetwork and
Distributed Systems Security (NDSS) Symposium 2021.

[55] Eliya Stein. 2021. Tag Barnakle One Year Later: 120+ More Revive Adserver
Hacks. https://blog.confiant.com/tag-barnakle-one-year-later-120-more-revive-
adserver-hacks-f3e5b3bc8e70

[56] Nati Tal and Oleg Zaytsev. 2023. “EtherHiding” — HidingWeb2Malicious Code
in Web3 Smart Contracts. https://labs.guard.io/etherhiding-hiding-web2-
malicious-code-in-web3-smart-contracts-65ea78efad16

[57] Sansec ForensicsTeam. 2020. Sansec reveals longestMagecart skimmingoperation
to date [Analysis]. https://sansec.io/research/longest-skimming-operation-yet

[58] The BlackBerry Research & Intelligence Team. 2023. Silent Skimmer: On-
line Payment Scraping Campaign Shifts Targets From APAC to NALA.
https://blogs.blackberry.com/en/2023/09/silent-skimmer-online-payment-
scraping-campaign-shifts-targets-from-apac-to-nala

[59] W3C. 2015. Content Security Policy Level 1. https://www.w3.org/TR/CSP1/
[60] W3C. 2016. Content Security Policy Level 2. https://www.w3.org/TR/CSP2/
[61] W3C. 2016. Subresource Integrity. https://www.w3.org/TR/SRI/
[62] Taojie Wang, Jin Chen, and Tao Yan. 2022. A New Web Skimmer Campaign

Targets Real EstateWebsites Through Attacking Cloud Video Distribution Supply
Chain. https://unit42.paloaltonetworks.com/web-skimmer-video-distribution/

[63] UDNweb docs backup. [n. d.]. CSP: require-sri-for - HTTP. https://udn.realityr
ipple.com/docs/Web/HTTP/Headers/Content-Security-Policy/require-sri-for

[64] MikeWest. 2024. Content Security Policy Level 3. https://www.w3.org/TR/CSP3/
[65] JunDong Xie. 2021. New Attack Surface in Safari: Using Just one Web Audio

vulnerability to rule the Safari. https://i.blackhat.com/asia- 21/Friday-
Handouts/as-21-Xie-New-Attack-Surface-In-Safari-Use-Just-One-WebAudio-
Vulnerability-To-Rule-Safari-wp.pdf

https://linksentry.io/blog/from-the-ivory-tower-to-putting-it-all-on-red
https://blog.sucuri.net/2021/07/magecart-swiper-uses-unorthodox-concatenation.html
https://blog.sucuri.net/2021/07/magecart-swiper-uses-unorthodox-concatenation.html
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorker
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorker
https://www.akamai.com/blog/security/a-new-skimmer-uses-websockets-and-a-fake-credit-card-form-to-steal-sensitive-data
https://www.akamai.com/blog/security/a-new-skimmer-uses-websockets-and-a-fake-credit-card-form-to-steal-sensitive-data
https://www.akamai.com/blog/security/2024-polyfill-supply-chain-attack-what-to-know
https://www.akamai.com/blog/security/2024-polyfill-supply-chain-attack-what-to-know
https://www.trendmicro.com/en_us/research/19/a/new-magecart-attack-delivered-through-compromised-advertising-supply-chain.html
https://www.trendmicro.com/en_us/research/19/a/new-magecart-attack-delivered-through-compromised-advertising-supply-chain.html
https://www.w3.org/TR/service-workers/
https://www.w3.org/TR/service-workers/
https://www.bankinfosecurity.com/ticketmaster-fined-17-million-for-data-security-failures-a-15369
https://www.bankinfosecurity.com/ticketmaster-fined-17-million-for-data-security-failures-a-15369
https://www.malwarebytes.com/blog/news/2019/12/new-evasion-techniques-found-in-web-skimmers
https://www.malwarebytes.com/blog/news/2019/12/new-evasion-techniques-found-in-web-skimmers
https://www.malwarebytes.com/blog/news/2020/05/credit-card-skimmer-masquerades-as-favicon
https://www.malwarebytes.com/blog/news/2020/05/credit-card-skimmer-masquerades-as-favicon
https://www.malwarebytes.com/blog/news/2020/06/web-skimmer-hides-within-exif-metadata-exfiltrates-credit-cards-via-image-files
https://www.malwarebytes.com/blog/news/2020/06/web-skimmer-hides-within-exif-metadata-exfiltrates-credit-cards-via-image-files
https://blog.sucuri.net/2023/12/40-new-domains-of-magecart-veteran-atmzow-found-in-google-tag-manager.html
https://blog.sucuri.net/2023/12/40-new-domains-of-magecart-veteran-atmzow-found-in-google-tag-manager.html
https://doi.org/10.1109/SP46214.2022.00008
https://johnny.so/publication/so-2025-lost/so-2025-lost.pdf
https://johnny.so/publication/so-2025-lost/so-2025-lost.pdf
https://blog.sucuri.net/2025/03/cascading-redirects-unmasking-a-multi-site-javascript-malware-campaign.html
https://blog.sucuri.net/2025/03/cascading-redirects-unmasking-a-multi-site-javascript-malware-campaign.html
https://blog.sucuri.net/2025/02/google-tag-manager-skimmer-steals-credit-card-info-from-magento-site.html
https://blog.sucuri.net/2025/02/google-tag-manager-skimmer-steals-credit-card-info-from-magento-site.html
https://blog.confiant.com/tag-barnakle-one-year-later-120-more-revive-adserver-hacks-f3e5b3bc8e70
https://blog.confiant.com/tag-barnakle-one-year-later-120-more-revive-adserver-hacks-f3e5b3bc8e70
https://labs.guard.io/etherhiding-hiding-web2-malicious-code-in-web3-smart-contracts-65ea78efad16
https://labs.guard.io/etherhiding-hiding-web2-malicious-code-in-web3-smart-contracts-65ea78efad16
https://sansec.io/research/longest-skimming-operation-yet
https://blogs.blackberry.com/en/2023/09/silent-skimmer-online-payment-scraping-campaign-shifts-targets-from-apac-to-nala
https://blogs.blackberry.com/en/2023/09/silent-skimmer-online-payment-scraping-campaign-shifts-targets-from-apac-to-nala
https://www.w3.org/TR/CSP1/
https://www.w3.org/TR/CSP2/
https://www.w3.org/TR/SRI/
https://unit42.paloaltonetworks.com/web-skimmer-video-distribution/
https://udn.realityripple.com/docs/Web/HTTP/Headers/Content-Security-Policy/require-sri-for
https://udn.realityripple.com/docs/Web/HTTP/Headers/Content-Security-Policy/require-sri-for
https://www.w3.org/TR/CSP3/
https://i.blackhat.com/asia-21/Friday-Handouts/as-21-Xie-New-Attack-Surface-In-Safari-Use-Just-One-WebAudio-Vulnerability-To-Rule-Safari-wp.pdf
https://i.blackhat.com/asia-21/Friday-Handouts/as-21-Xie-New-Attack-Surface-In-Safari-Use-Just-One-WebAudio-Vulnerability-To-Rule-Safari-wp.pdf
https://i.blackhat.com/asia-21/Friday-Handouts/as-21-Xie-New-Attack-Surface-In-Safari-Use-Just-One-WebAudio-Vulnerability-To-Rule-Safari-wp.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Resource Integrity
	2.2 Threat Model
	2.3 Service Workers

	3 Link Management System (LiMS)
	3.1 Integrity Policy Language Specification
	3.2 Policy Enforcement
	3.3 Link Management and Policy Verification
	3.4 Trust Model
	3.5 Deployment

	4 Security Considerations
	4.1 Service Worker
	4.2 JavaScript-based Attacks
	4.3 Policy and Cache Robustness
	4.4 Link Discovery & Management
	4.5 Resource Camouflaging
	4.6 Policy Consistency
	4.7 Policy Updates

	5 Policy Building Blocks
	5.1 Policy: Domain Lifecycle
	5.2 Policy: Domain Ranking
	5.3 Policy: Threat Intelligence
	5.4 Policy: Dependencies
	5.5 Policy: SRI Violation Reporting
	5.6 Policy: Infrastructure Attributes
	5.7 Policy: CMS Core File Integrity

	6 Evaluation
	6.1 Domain Sample
	6.2 Performance Overhead
	6.3 Policy Evaluation

	7 Related Work
	8 Discussion
	8.1 Limitations
	8.2 Design Considerations

	9 Conclusion
	Acknowledgments
	References

