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Abstract. Despite the large number of proposed countermeasures against
control-flow hijacking attacks, these attacks still pose a great threat for
today’s applications. The problem with existing solutions is that they
either provide incomplete probabilistic protection (e.g., stack canaries)
or impose a high runtime overhead (e.g., bounds checking).
In this paper, we show how the concept of program-part duplication
can be used to protect against control-flow hijacking attacks and present
two different instantiations of the duplication concept which protect
against popular attack vectors. First, we use the duplication of functions
to eliminate the need of return addresses and thus provide complete
protection against attacks targeting a function’s return address. Then
we demonstrate how the integrity of function pointers can be protected
through the use of data duplication. We test the combined effectiveness
of our two methods and experimentally show that they provide an almost
complete protection against control-flow hijacking attacks with only a
low runtime overhead in real-world applications.

Keywords: control-data attacks, duplication, return addresses, function
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1 Introduction

All but the simplest of programs contain non-straight-line code, i.e. code for
which the control-flow is not fixed at compile time. The control-flow of those
programs will be dictated by data structures located somewhere in memory.
These control structures normally take the form of a memory address where
the next instruction to be executed is located; the most common examples are
return addresses and function pointers. If the program contains some kind of
vulnerability that gives the attacker the opportunity to write arbitrary data to a
control structure, he will be able to hijack the control-flow.

The problem of control-flow hijacking has been known for a long time; the
Morris worm [28] in 1988 was the first popular attack to exploit a stack-based
buffer overflow to this end. As such, this problem has gained much attention from
the academic world and numerous solutions have been proposed. The most widely



adopted solution for protecting return addresses is the use of stack canaries (e.g.
StackGuard [9] for GCC). While very effective, stack canaries are no silver bullet
for the problem of return address smashing. The reason for this is threefold.
Firstly, stack canaries can only detect return address smashing through a buffer
overflow. If the attacker manages to overwrite the return address through an
indirect pointer overwrite [6], he will be able to bypass the protection mechanism.
Secondly, the effectiveness of stack canaries relies on a secret value that is located
somewhere in memory. If the attacker somehow gains access to this memory
location by either overwriting it or disclosing its contents, the protection becomes
useless. For instance, prior research has shown that buffer over-reads and format-
string vulnerabilities can be used to uncover secrets hidden on the stack or heap
of a protected application [31]. Lastly, most implementations will not protect
every function by default but rather use a heuristic to decide which functions
to protect. This heuristic usually takes the form of only protecting functions
that have a stack-allocated character buffer of a certain minimum size and is
used to minimize the performance overhead of stack canaries. A recent exploit of
LibTIFF [24] used an overflow in an integer array and, as such, was not detectable
by stack canaries.

A second attack vector that is used to hijack the control flow of a program,
are function pointers. The protection of function pointers, however, has gained
much less attention than the protection of return addresses, probably because of
their relatively infrequent use in applications. One proposed technique to protect
function pointers is the use of encryption by PointGuard [8]. Here, pointer values
are encrypted (using XOR with a secret value) when stored and decrypted when
used. This technique, like stack canaries, relies on a secret value that the attacker
cannot know for the protection to remain effective. Again, it has been shown
that this protection may be circumvented in the presence of a buffer over-read
vulnerability [31].

In this paper, two techniques are introduced that use duplication to prevent
control-flow hijacking. The first technique is a novel compile-time solution of
protecting return addresses. Our system duplicates functions in such a way that
makes return addresses unnecessary for the program to run correctly. Since
instead of trying to protect return addresses we completely remove them from
the program, there simply is no return control-structure left to be attacked.
Therefore, this technique provides a more thorough solution to the problem of
return address smashing than any popular countermeasure that tries to protect
return addresses, including stack canaries. As an added benefit, this technique
proves to have little or no overhead since there are no runtime checks to be
performed. In fact, programs protected by this scheme in some cases outperform
their unprotected versions.

The second technique this paper introduces uses the duplication of control
data to protect function pointers. Function pointers used by a program are
duplicated in a protected storage so that they can be checked for corruption when
used. This technique is similar to that of the Return Address Defender [7], but
applied to function pointers instead of return addresses. Because of the infrequent



use of function pointers (as opposed to return addresses), the runtime overhead
of our technique has proven to be small for most programs.

The rest of this paper is structured as follows: Section 2 gives the general
principles of how duplication can be used to prevent control-flow hijacking and
shows the design of two different instantiations of this principle. Section 3 gives
a short overview of how these instantiations were implemented. In Section 4, we
evaluate the two introduced techniques in terms of effectiveness in protecting
programs and their overhead on the runtime performance and program size,
followed by a discussion of some issues we encountered in Section 5. Section 6
discusses related work and we conclude in Section 7.

2 Design

2.1 Using Duplication for Protection

There are two ways in which duplication can be used to protect control data in
memory: (a) duplicate the control data itself so that it becomes more difficult to
overwrite all copies, or (b) duplicate some other part of the program so that the
control data is not needed any more. Using (a) is highly generic: any kind of data
can be protected in this way. How well this protection works, however, depends
on how the duplicated control data is protected since an attacker might be able
to find a way to overwrite both copies and circumvent the protection. Also, this
technique will always cause runtime overhead on the protected program.

Technique (b), on the other hand, offers full protection of the control data
by completely removing it. Another asset of this technique is that it does not
rely on any runtime checks so it might be possible to implement it without any
runtime overhead on the protected program. Unfortunately, it is not possible
to protect all types of control data by this scheme. The next sections explain
instantiations of both schemes.

2.2 Protecting Return Addresses

Idea. The key idea of our approach is that return addresses are only needed
if a function is called from more than one place. Indeed, if a function has only
one call site, the return instruction can be replaced by a jump instruction to a
hard coded label just after the call site. Figure 1 illustrates this. The transformed
function always semantically behaves the same as the original as long as it is
only called from one call site.

The whole purpose of having functions, however, is to enable code-reuse.
Therefore, most programs will likely not have many functions that are only called
from a single call site. This is where function duplication comes in: if we make
as many copies of a function as it has call sites, all return instructions in those
copies can be eliminated.



1 foo:

2 ...

3 call bar

4 ...

5 bar:

6 ...

7 ret

⇒
1 foo:

2 ...

3 jmp bar

4 bar_ret:

5 ...

6 bar:

7 ...

8 jmp bar_ret

Fig. 1. Transforming a return instruction into a jump

Duplicating Functions. To duplicate functions in such a way that every
function has only one call site, information is needed about which function calls
are made in a program. More specifically, we need to know for each function by
which functions it is called. This information is available in the call graph of the
program. A call graph is a directed graph in which every function of the program
is represented by a node and there is an edge from node A to node B if function
A calls function B. For example, the call graph of the program in Fig. 2 is shown
in Fig. 3a.

1 static void foo() {}

2 static void bar() {foo ();}

3 void baz() {bar ();}

4 void qux() {bar ();}

Fig. 2. An example C program

There is one special node visible in this call graph: the external node. A
node has an incoming edge from the external node if it might be called from
an unknown function. In this example, the functions baz and qux have external
linkage (i.e., not declared with the static keyword in C) which means they
might be called from functions not available at the time of compilation. This is
important information since it means that we cannot eliminate return instructions
in functions that are called from the external node. Indeed, it is impossible to
compute, at the time of compilation, where these functions should return to.

Through the use of the information available in the call graph, the process of
duplicating functions is straightforward. Starting from the external node, every
node is visited once. If a node is visited that has more than one incoming edge,
it is copied as many times as there are incoming edges and the call graph is
updated accordingly. For the example C program shown in Fig. 2, the nodes
corresponding to the function baz and qux are visited first. Since both have only
one incoming edge, nothing needs to be done. Next, the node for the function bar



is visited, which has two incoming edges. Duplicating this function introduces a
new function and the original call sites are updated. This is illustrated in Fig. 3b.
Note that due to this transformation, the function foo, which originally had only
one call site, now has two. The node for bar_clone, which has only one incoming
edge, is visited next. Then foo is visited which needs to be duplicated. When
this is done, the process is complete. The resulting call graph is shown in Fig. 3c.

external node

baz qux

bar

foo

(a) Call graph
of the example
program.

external node

baz qux

bar bar_clone

foo

(b) Call graph after
bar has been dupli-
cated.

external node

baz qux

bar bar_clone

foo foo_clone

(c) Call graph af-
ter the duplication
process.

Fig. 3. Example call graph transformation.

At this point, the program has been transformed to a version that is seman-
tically equivalent to the original but has only functions that are called by at
most one other function. This means the principle explained in the previous
section can be applied in a straightforward way. First, we add a label after all
call instructions, which will allow the called function to jump back to this point.
Then, in the called function all return instructions are replaced by direct jumps
to the inserted label.

Recursive Functions. The aforementioned technique of function duplication
does not work for recursive functions, since recursive functions cannot be du-
plicated in a way that makes them have only one call site. The same property
holds for groups of mutually recursive functions. As a result, we cannot know at
compile time where a recursive function will return to. To solve this problem,
this decision has to be postponed to runtime.

The approach taken in our solution is the following: first, the functions in the
call graph are grouped in sets of mutually recursive functions; these sets are the
strongly connected components of the call graph1. Then duplication is performed
as usual but instead of duplicating functions, these sets are duplicated. The result

1 A strongly connected component of a directed graph is a maximally sized subgraph
in which each node can reach all other nodes



of this step is a call graph in which each mutually recursive group of functions
has only one call site from outside this group. This assures that each function
has the lowest possible number of call sites.

When eliminating return instructions, each call to a function having more
than one call site will push a different return index on the stack. When the called
function needs to return, it will pop this index and use it to decide where to return
to. If an invalid index is encountered when returning, the program is aborted.
Note that this approach is similar is the one taken by Li et al. in [15]. However,
they make use of global return indices (i.e., every call site in the program has a
unique return index) whereas in our approach, these indices are local to functions.
Also, since return indices possibly introduce a new attack vector, only (mutually)
recursive functions make use of these indices; normal functions always jump to
the same location when returning. We discuss this in more detail in Section 5.

Function Duplication versus Function Inlining Another way that return
addresses could be eliminated from a program is through function inlining, a
process where the compiler incorporates functions in the body of their callers.
While this is a viable approach for simple functions, it cannot be used for
(mutually) recursive functions. At the same time, the incorporation of functions
that are not frequently used in the body of functions that are, will likely lead to
increased cache misses which will in turn incur a higher performance overhead.
For these two reasons, we decided that the maintenance of functions as stand-
alone chunks of code with hard-coded return addresses is the best of the two
approaches and thus favored it over function inlining.

2.3 Protecting Function Pointers

For the protection of function pointers, we have taken the approach of dupli-
cating the pointers themselves. The source code of a program is automatically
transformed so that when a value is stored in a function pointer, it is duplicated
in another part of memory and when it is loaded, the loaded value is compared
with the duplicated value. If these values do not match, the program is aborted.

Although duplication alone would provide some protection – the attacker
would need to find a way to overwrite two distinct memory locations with the
same value – our technique additionally protects the memory locations where
duplicates are stored. Two different techniques for protecting these duplicates
are provided by our solution: (a) the use of unwritable guard pages around
the storage, or (b) making the entire storage location unwritable while it is
not needed. While (b) is clearly the most secure of the two, it also incurs the
most overhead since two calls to mprotect (thus, two system calls) are needed
whenever a pointer is stored: one to unlock the storage and one to lock it again.
Note that no system calls are needed when a pointer is loaded since the storage
remains readable at all times.



3 Implementation Details

The techniques presented in this paper have been implemented using the LLVM
Compiler Infrastructure [17]. Compilation of a program using LLVM is a three-step
process: (a) a frontend translates the source language in the LLVM Intermediate
Representation (IR), (b) architecture independent optimizations are run on
the IR, and (c) a backend translates the IR to target instructions and runs
architecture dependent optimizations.

3.1 Protecting Return Addresses

The technique of duplicating functions to protect return addresses has been
implemented as two passes in LLVM. The first pass is a transformation of the
IR to bring the program in the form discussed in Section 2.2: every function has
only one call site. Because it transforms the IR, it is completely independent
of the source language and the target architecture. Unfortunately, the IR has
some restrictions which make it impossible to eliminate return instructions at
this point. More specifically, the IR does not allow jumping outside of functions,
which is exactly what is needed to replace return instruction by jumps.

The solution to this problem is to eliminate return instructions in the backend
where it is possible to insert arbitrary instructions of the target architecture.
The downside of this approach is that the implementation is not architecture
independent any more. Currently, support has been implemented for x86 (32 and
64 bit), which is the platform of choice for most desktop and server environments.

3.2 Protecting Function Pointers

The implementation of our protection of function pointers contains two parts: a
secure storage mechanism and a program transformation that inserts calls to this
storage. The secure storage is implemented as a fixed-size hash map to provide
fast insertions and lookups of pointers. The hash map maps the address of a
memory location to the value of the function pointer at that memory location.
The size of the storage, as well as the desired protection mechanism, can be
configured through environment variables.

The transformation of the program is implemented as a pass in LLVM. It is
a transformation of the LLVM IR so it is completely independent of the source
language or target architecture. The transformation itself is straightforward: all
loads and stores of function pointers are replaced with calls to the secured storage.
This is illustrated in Fig. 4. There are three transformations visible in this figure:
(a) assignments to a function pointer are replaced by a call to __store_ptr().
This function stores the pointer in the protected storage as well as in the original
location. (b) Calls of a function pointer are replaced by a call to __load_ptr()

which loads the pointer from the storage and checks for equality with the value
at the original location. The pointer is loaded in a register and then this register
is used to call the function. (c) If the lifetime of the protected pointer ends, its
storage space is released with __free_ptr(). Currently, this is only implemented
for stack based function pointers.



1 void foo();

2
3 void bar()

4 {

5 void (*f)() = foo;

6 f();

7 }

⇒

1 void foo();

2
3 void bar()

4 {

5 void (*f)();

6 __store_ptr (&f, foo);

7 register void (*tmp )() =

8 __load_ptr (&f);

9 tmp ();

10 __free_ptr (&f);

11 }

Fig. 4. Transformation used for pointer duplication

4 Evaluation

4.1 Security evaluation

We evaluated the provided protection of our solutions using RIPE [36], an open
source testbed for quantifying the protection of any given countermeasure. RIPE
performs a plethora of different attacks on itself and reports each attack’s success
or failure. For example, it is able to perform direct (e.g., buffer overflows) and
indirect attacks on return addresses, function pointers and longjmp buffers2

located in all memory segments (e.g., stack, heap and BSS). All experiments were
performed on a Linux system configured to not use any protection mechanisms.

The results of RIPE are shown in Table 1. For the protection of return
addresses, it is clear that our proposed technique of duplicating functions is
more effective than stack canaries3. This is because, as explained in Section 1,
stack canaries fail to protect against indirect pointer overwrite attacks while our
technique does protect against such attacks.

The table also shows that using the pointer duplication technique is very
effective: on its own, it protects against more than half of the attacks that were
possible in the unprotected version of RIPE. The reason that the protection of
function pointers seems to be more effective than that of return addresses is
that RIPE is able to perform more attacks on the former. When combining our
two techniques, the only attacks that still succeed are attacks abusing longjmp

buffers. Given the fact that newer versions of libc actively protect this type
of structures, the same LLVM-compiled and protected binary produces zero
successful attacks on a more modern system.

2 Longjmp buffers are used to store the program state (e.g. program counter and stack
pointer) between calls of setjmp() and longjmp() and are a popular attack vector.

3 We use the stack canary implementation of LLVM which is similar to StackGuard



Table 1. The number of successful attacks in RIPE when using different protections.

Protection type Successful attacks

No protection 540
Stack canaries (1) 520
Duplicated functions (2) 470
Duplicated function pointers (3) 230
(1) + (3) 210
(2) + (3) 180

4.2 Performance evaluation

In our evaluation, we compare the runtime performance of applications protected
by our techniques to that of unprotected applications. Duplicated function
pointers are protected by guard pages to give a baseline of the overhead incurred
by this countermeasure. We also show the performance of each application when
protected by stack canaries since our proposed technique of duplicating functions
is an alternative to that approach.

Two types of performance benchmarks are used: First, we compare the runtime
performance of our system using SPECint2006 [29] with the reference workload.
Second, we evaluate the performance of popular server applications following the
same approach used by Lvin et al. [18].
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Fig. 5. Runtime performance of the SPECint2006 benchmark suite

SPECint2006. Figure 5 presents the normalized runtimes of the 12 programs
of SPECint2006. For some of the programs, we were unable to produce valid
runs: (a) 403.gcc did not compile when using duplicated functions because of
out-of-memory issues (b) 400.perlbench and 483.xalancbmk did not run using



duplicated function pointers because of false positives. These issues will be further
discussed in Section 5.

As observable in Fig. 5, function duplication incurs no overhead for most
programs and even causes a slight speed-up in some applications. There are
some programs for which there is overhead when using duplicated functions
but this overhead is less than 10% in all cases. The use of duplicated function
pointers can cause a higher overhead for applications that make heavy use of
function pointers. The most affected program, 464.h264ref, has an overhead of
approximately 20%. While this is a non-negligible overhead, it is also obvious
that all other applications that make more moderate use of function pointers
have a much lower overhead.

Server Applications. The performance of three different server applications
was measured: the thttpd web server, the bftpd FTP server and the OpenSSH
server. For the first two, we measured the time it takes for 50 simultaneous
clients to make 100 requests each. For OpenSSH, we measured the time needed
to authenticate, spawn a shell and disconnect.

Figure 6 shows the results of these experiments, normalized with the programs’
unprotected versions. The overhead incurred by duplicating functions is negligible.
The overhead due to function pointer duplication is less than 2% in almost all
cases with the exception of the OpenSSH server where the overhead is 6%.
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4.3 Code-size evaluation

The duplication of all functions so as to eliminate the need of return addresses
leads of course to the expansion of the code section of a program. The average
size of the SPECint2006 binaries, before function duplication is 2MB. After the



application of our duplication algorithm, the average size is 156 MB. While this
may appear as a very high overhead, it is important to remember that this is the
size of the program on disk. Given the capacity of today’s commercial off-the-shelf
hard disks, we believe that the difference in size is unimportant. The enlarged
code section will still be loaded as individual memory pages by the operating
system, and each page will be in-turn swapped-out when it is no longer necessary.
This behavior allows for the majority of the code to be off-memory, on-disk while
still maintaining low performance overheads, as shown in Section 4.2.

5 Discussion and Future Work

Return Address Protection. In principle, the technique of function duplica-
tion offers complete protection from return address smashing since the return
addresses are simply removed from the program. However, special care has to
be taken to ensure that the entire attack surface is covered. As explained in
Section 2.2, return addresses cannot be removed from functions that have external
linkage. This means that there will always be one copy of such functions that will
not benefit from our protection. Fortunately, this problem can easily be solved
by postponing the function duplication step to link time where the linkage type
of all function can be changed to internal.

Functions that are called though function pointers pose a similar problem as
those with external linkage. For these functions it is also impossible to know at
compile time where they will return to, so we need to keep one copy of each which
still uses a return address. Unfortunately, there seems to be no easy way to solve
this problem, leaving those functions unprotected in our current implementation.
It should be noted, however, that these function are protected when a direct call
to them is made. This means that if such a function contains a vulnerability, it
can only be exploited when it is called through a pointer.

Since our solution to the problem of recursive functions, discussed in Sec-
tion 2.2, introduces state on the stack, one might wonder whether this state could
become a new attack vector. As mentioned earlier, our approach is similar to that
used in [15] with the difference that the indices used by us are local to functions
instead of global to the program. Because the indices are local to functions, the
number of possible legal values an attacker could overwrite an index with, is very
limited making it practically impossible to construct exploits of any real value. If
the index on the stack is not in the range of values expected by the program, the
process aborts thus any in-place attacks are terminated.

Lastly, note that our system focuses on the protection of return addresses
instead of the detection of buffer overflows. Since the return addresses cannot be
modified by an attacker, applications may be able to execute correctly even in
the presence of an overflow that would normally hijack or crash the program.

Memory Usage While duplicating functions, memory usage can be problematic:
some programs may fail to compile due to out of memory errors. However, since
most software is provided in binary form, a vendor can provide the necessary



resources once upon compilation and then ship the compiled and protected binary
to all users. Nevertheless, to make our countermeasure as widely applicable as
possible, we currently provide two possible solution to this problem. The first is
the ability to manually exclude functions from the duplication process. While
not optimal, this approach can be used by seasoned developers who understand
which functions are the least likely to contain vulnerabilities. One of our goals
however, is to make the protection of return addresses fully automatic. Hence, we
are currently implementing an automatic safety analysis framework to eliminate
the need of manual intervention.

In our current implementation, a function is considered unsafe if it might do
anything that alters memory in an unexpected way. This approach is already
more sophisticated than the heuristics used in most stack canary implementations,
which only check for the presence of character buffers on a function’s stack frame.
Our framework takes into account the fact that the return address of a function
other than the current one may be overwritten by writing through a compromised
pointer [6]. This means that any store through a pointer may only be considered
safe if it can be proven where that pointer points to and that the corresponding
memory location is large enough to store the value being stored.

The results of this framework are looking promising in the sense that a
lot of functions can already correctly be detected as being safe. However, a
significant amount of work still lies ahead since the number of functions that can
be eliminated from duplication is still not enough to make all complex programs
compile in a safe way.

Memory Aliasing Most low-level programming languages allow casting of
pointer types. This makes it impossible to know in some cases whether or
not a store to a memory location stores a function pointer. In our current
implementation, we simply ignore loads of pointers to which no corresponding
store has occurred which means that such pointers are not protected.

One way to protect those pointers is by observing that, if a function pointer
is aliased by another pointer, this pointer is a void pointer in most cases. This
means that we could duplicate all void pointers in addition to function pointers
although this would likely incur a higher runtime overhead than the current
function pointer duplication.

6 Related Work

In general, there are three categories of countermeasures against popular control-
flow hijacking attacks: (a) specifically trying to protect return addresses and
function pointers, (b) more generally trying to counter vulnerabilities that enable
the overwriting of sensitive control-data structures, and (c) minimizing the
usefulness of being able to overwrite a control-data structure. Our function-
duplication technique belongs to category (a). Here we will discuss some of the
most well-known existing countermeasures in all three categories.



A popular way of detecting attacks against a function’s return address is
through the use of stack canaries. Most modern compilers have implemented
some form of stack canaries (e.g., StackGuard [9] for GCC). ProPolice [11] is a
re-implementation of StackGuard with the addition of security-enhancing features
such as variable reordering. While more robust than StackGuard, ProPolice also
cannot detect a return-address overwrite, happening through an indirect pointer
overwrite.

Another way of protecting return addresses is by using a shadow stack. Return
addresses will be pushed on both the normal and the shadow stack and then
checked for equality when used. This approach is used by the Return Address
Defender [7] and Libverify [4] and in both cases, the mechanism necessary to pro-
tect the shadow stack incurs a significant performance overhead. StackShield [35]
follows a similar approach with a return-address shadow stack, but also attempts
to protect function pointers by verifying that they do not point within the pro-
gram’s stack, heap or data segment. Recent attacking techniques however, like
return-to-libc [10] and return-oriented-programming [26], that do not need to
inject new code in a process’ address space circumvent this countermeasure.

Function pointers can be protected much in the same way as return addresses.
PointGuard as discussed in Section 1, is a technique specifically designed to
protect function pointers. ValueGuard, by Van Acker et. al [34], protects all data
items from overflows, including function pointers. This is done by placing canaries
before every item, similar to the StackGuard approach. Unfortunately, the large
number of checks causes this technique to incur a large runtime overhead.

The most common vulnerability that leads to the attacker being able to
overwrite the return address or a function pointer located on the stack is a
stack-based buffer overflow. A popular way of defending against buffer overflows
is through the use of bounds-checkers, systems that discover the correct bounds
of each object and terminate programs that write out-of bounds. These systems
provide strong security guarantees and researchers have therefore proposed a
plethora of bounds-checkers [3, 12, 13, 14, 19, 20, 30]. These security guarantees
however, usually come at the cost of high runtime overheads. Today, the fastest
implementation of a bounds checker has a runtime overhead of about 60% [2].

The third type of protection tries to prevent the usefulness of overwriting
a return address. An attacker can make the most out of overwriting a return
address if he can point it to code he supplied himself. The easiest way to do
this is to inject code together with the new value for the return address which
means this code will end up on the stack. An obvious way to prevent such
an exploit is to make the stack non-executable [33]. Another common way to
mitigate such exploit is Address Space Layout Randomization (ASLR) [5, 32].
Both approaches however, have their limitations: a non-executable stack will not
prevent overwriting the return address with the location of existing code in the
program’s address space and ASLR can be de-randomized [23,27] or bypassed
altogether [25].

When a control-flow hijacking attack is being carried out, the attacked program
inevitably diverges from its normal control-flow. A number of countermeasures



have been proposed that use this fact to detect control-flow hijacking attacks.
One way to detect such divergences is to monitor the system calls made by
the program. Systrace [22], by Provos, automatically builds system call policies
during training sessions. If, during a normal run, a system call is encountered
that is not specifically allowed by the policy, the user is asked if the call should
be allowed. Linn et al. proposed statically analyzing binaries to discover from
which addresses system calls are made [16]. These locations are then transfered
to the kernel which enforces them on subsequent system calls.

The previous techniques only try to enforce normal program behavior at its
boundaries, i.e., the behavior that is exhibited towards the kernel. Abadi et al.
have proposed a more complete technique for insuring the integrity of control-
flow within programs [1]. They statically create the program’s Control-Flow
Graph (CFG), which contains all control transfers the program can legally make.
Then, the binary is instrumented so that every control transfer is checked at
runtime to correspond to an edge in the CFG. A similar approach is taken by
Philippaerts et al. in [21]. Here, control-data is masked before being used in order
restrict the addresses it can hold.

7 Conclusion

The market penetration of personal computing devices, and the expansion of
server-side computing resources to handle the fast-growing client population,
has made the task of protecting vulnerable software and private user-data more
relevant than ever. In this paper we reviewed the shortcomings of popular
countermeasures against control-flow hijacking and introduced the concept of
program-part duplication as a means of securing the control-flow of a potentially
vulnerable program.

We instantiated the duplication concept and introduced a novel technique that
duplicates the functions in a program in such a way that return addresses are no
longer needed, providing a complete protection against return address smashing
attacks. Additionally, we described a generic method which uses duplication
to protect all types of control-data and demonstrated how this method can be
used to protect function pointers. The evaluation of our techniques showed that
they provide a very effective protection while incurring only a minimal runtime
overhead in real-life applications, making them applicable to both desktop and
server environments.
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