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ABSTRACT
Honeypots constitute an invaluable piece of technology that al-
lows researchers and security practitioners to track the evolution
of break-in techniques by attackers and discover new malicious IP
addresses, hosts, and victims. Even though there has been a wealth
of research where researchers deploy honeypots for a period of
time and report on their findings, there is little work that attempts
to understand how the underlying properties of a compromised
system affect the actions of attackers. In this paper, we report on
a four-month long study involving 102 medium-interaction hon-
eypots where we vary a honeypot’s location, difficulty of break-in,
and population of files, observing how these differences elicit differ-
ent behaviors from attackers. Moreover, we purposefully leak the
credentials of dedicated, hard-to-brute-force, honeypots to hacking
forums and paste-sites and monitor the actions of the incoming
attackers. Among others, we find that, even though bots perform
specific environment-agnostic actions, human attackers are affected
by the underlying environment, e.g., executing more commands on
honeypots with realistic files and folder structures. Based on our
findings, we provide guidance for future honeypot deployments and
motivate the need for having multiple intrusion-detection systems.
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1 INTRODUCTION
Despite our advancements in security policies and mechanisms,
attackers are still able to compromise systems using a wide-range
of techniques including social engineering, abuse of password leaks
and credential reuse, and mere brute-forcing. The Mirai botnet [19],
a large botnet which is composed of compromisedwebcams, routers,
and other IoT devices, is a living testament that, even today, attack-
ers can create botnets that are powerful enough to cause Internet
outages at a country level, by merely abusing default login creden-
tials of the aforementioned devices [10].

To understand how attackers compromise systems andwhat they
do once they successfully break-in, researchers and security prac-
titioners have been using honeypots. Honeypots are systems that
are purposefully insecure, with the goal of luring attackers away
from production systems and allowing researchers to study their
techniques. Honeypots can vary depending on the level of interac-
tion that they support (e.g. low, medium, and high-interaction) and
the type of system that they purport to be (e.g. a general-purpose
server vs. a SCADA system). Even though there is a lot of prior work
in designing, deploying, and measuring the results of honeypots,
in most cases the studies conducted were purely observational in

nature [2, 16, 20, 28, 29, 33]. That is, one or more honeypots were
deployed in one or more parts of the world and the researchers,
at the end of their study, analyzed the recorded attacks describing
their observations and discovered patterns of attacks.

In this paper, we report on the first large-scale study using
medium-interaction SSH honeypots where, in addition to deploying
honeypots and monitoring their activity, we change the environ-
ments of some honeypots in a controlled fashion and observe how
these changes affect attackers. Specifically, we observe how the
location of the honeypot, the difficulty of breaking in, and the file
population on the compromised system has an effect on the ac-
tions of intruders. Over a span of four months, we deployed 102
honeypots in three different continents and received 12 million con-
nections originating from 38K unique IP addresses. By analyzing
the collected data, we observed patterns which we argue are of
critical importance to future honeypot deployments and specific
types of intrusion detection systems that rely on attackers interact-
ing with monitored files, such as, tripwires and decoys [7, 31, 34].
Among others, we discovered that i) location and hosting provider
matters, ii) attackers are very opportunistic (trying very few cre-
dential combinations before moving on to the next target), iii) the
difficulty of break-in correlates with the eventual presence of a
human attacker and iv) while human attackers are interested in
finding and exfiltrating user files, bot attackers (the majority of
attackers) are not. To rekindle interest in honeypot research and
how subtle differences have a large effect on attackers, we will open
source our code (modified honeypot software, Ansible scripts for
VM preparation [4], and log-processing code) and collected data.

2 EXPERIMENTAL SETUP
In this section we begin by describing Cowrie, our choice of honey-
pot, providing details about our setup and the modifications made
to test our hypotheses. We test three properties of honeypots corre-
sponding to different phases of an attack. The first is the physical
location of honeypots which impacts the target discovery/selection
step before login. The second is the difficulty of break-in which
affects attackers during login. The third is the population of files
on the honeypot which is relevant to attackers’ actions after login.
Once an attacker has progressed to the next phase of the attack
they are no longer directly affected by differences in the previous
step, which allows us to minimize convolution of experimental pa-
rameters. Performing a systematic study of these three dimensions
required the deployment of 102 different honeypots. By limiting
ourselves to three properties we avoid combinatorial explosion in
the number of honeypots required to make fair comparisons.

https://doi.org/10.1145/3134600.3134614


ACSAC 2017, December 4–8, 2017, San Juan, PR, USA Timothy Barron and Nick Nikiforakis

2.1 Our choice of honeypot
Honeypots are categorized based on how much they allow an at-
tacker to interact with them, ranging from low-interaction honey-
pots which support the bare minimum of a protocol (e.g. showing
a fake SSH prompt and recording the authentication attempts of at-
tackers) to medium-interaction honeypots which allow much more
freedom to an attacker but are still only simulating a real system,
and high-interaction honeypots which are essentially real, non-
simulated, systems. Due to space limitations, we refer readers who
want more information about the advantages and disadvantages of
different types of honeypots to the Honeynet project [26] and the
book by Provos and Holz [27].

After evaluating several alternatives, we decided to use the open-
source medium interaction honeypot called Cowrie [22]. Cowrie
emulates a file system and shell for every user who logs in. It
attempts to mimic the behavior of a real system as faithfully as
possible, while logging every action that a user takes from connect
to disconnect. Every session begins with an identical fresh setup
and any changes, such as, the creation of new files, only last for the
duration of that session. Moreover, each session is sandboxed so
that the actions of different users have no impact on their peers.

While Cowrie is a medium interaction honeypot (and therefore
does not support all the possible commands and operations that
attackers may try) it does attempt to provide plausible reasons for
the operations that it cannot support. For example, if attackers
attempt to clone a git repository they will encounter the following
error: bash: git: command not found. If they then attempt to
use a package manager to install the missing git program, e.g.,
apt-get install git, Cowrie will show output as if it is in-
stalling git, but when an attacker attempts to use it they will get
git: Segmentation fault. As such, an attacker may come to the
conclusion that the machine they have broken into is one with con-
figuration issues, e.g., buggy shared libraries, but not a honeypot.
Overall, we argue that Cowrie is a good choice for investigating
the overall motivation of attackers who break into our honeypots,
without us needing to take the collateral risk typically associated
with high-interaction honeypots. Finally, Cowrie is implemented
in Python which gave us the ability to rapidly prototype the modi-
fications described in the next sections.

2.2 Differences in file populations across
honeypots

Contrary to prior work, our main motivation for this study is not
to conduct one more observational study where we deploy honey-
pots for some time and then report our findings. Even though we
welcome statistics about the number and location of attackers, the
types of commands they use, and their overall interaction with our
honeypots (and report some of them in later sections), our main
goal is to understand whether an attacker’s actions are dependent
on certain properties of the compromised system. One such prop-
erty is whether a system appears to be in-use, as evidenced by
the files and folders present on its filesystem. Note that this is an
“after-login” property since attackers will only encounter it after
they have discovered and compromised a system.

To test how the population of files affects an attacker’s actions
(e.g. do they interact more with the filesystem when it appears

to be in use?) we deployed three varieties of honeypots: Vanilla,
Random, and Curated. A Vanilla honeypot is an unmodified Cowrie
installation with the only change being that of a new password.
This serves as our control. For the other two varieties we populated
the home folders with files to make the honeypots seem like they
had been used, i.e., real users have created directory structures and
files within these directories.

In the Random variety of honeypot, we created between 1 and 3
new users and randomly populated their home folders with files
and directories containing more nested files and directories. Each
Random honeypot has separately generated files so they do not
look the same, in case an attacker breaks into multiple honeypots.
The home folders have between 5 and 8 recursively populated direc-
tories and between 2 and 4 files. Each nested directory has between
2 and 10 files and 0 to depth directories where depth starts at 4 and
decreases by 1 at each level. Since we are not aware of any study
that quantifies the number of files and directory structures of an av-
erage user, we chose these values empirically in an attempt to make
the structure seem natural and varied. File and folder names were
created using the natural filename generator library [30] (slightly
modified for shorter names) and then randomly assigned extensions
of common file types. The contents of the files were random bytes
with a Gaussian size distribution centered around a general average
for that file type, e.g., 6 MB for MP3 files.

The third type of honeypot (which we called Curated) is one
where we put additional effort into making the files significantly
more believable than random generation allows. We added between
1 and 3 home folders and each was populated with common directo-
ries, such as, Documents, Pictures, Music, Videos, and Downloads.
Each of these contained random files with extensions matching
what would be expected for that location, e.g., PDFs in Documents
and MP3s in Music. We also added a directory called IMPORTANT
with a small number of PDFs and DOCs to see if it would draw any
more attention from attackers. Our exact choices were informed by
our own file systems and the ones from colleagues who allowed us
to inspect the structure of their home folder.

2.3 Honeypot location
To understand whether some honeypot locations are more prefer-
able than others, and whether different locations attract different
kinds of abuse, we deployed our honeypots in four different loca-
tions across the globe. One set was hosted on servers at our uni-
versity campus (East Coast, US). The other three sets were placed
on public clouds in northern California, USA (NA), Frankfurt, DE
(EU), and Singapore (Asia). We chose Amazon Web Services (AWS)
and Linode since both companies provide virtual private servers
in all aforementioned locations, and deployed the same number of
honeypots on each one. In each location/host we set up two honey-
pots of each type, in order to obtain redundant data and counter, as
much as possible, the inherent randomness of honeypot break-ins.
Combinatorially, this allowed us to deploy 36 honeypots on the
two public clouds, and 6 more on our campus, bringing the total
number of honeypots to 42.
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2.4 Difficulty of breaking in
The final experimental parameter is that of break-in difficulty, i.e.,
how sophisticated must an attacker be in order to successfully break
into our honeypots. To evaluate this parameter, we performed three
different honeypot deployments changing the type of password
that is required in order to login and whether the login method is
through brute-force or prior credential leakage.

Round 1. In the first round of this experiment we wanted it to
be easy for any attacker to log in so all honeypots accepted any
username and password combination. Since it might have appeared
suspicious if attackers always got in on their first try, instead they
were accepted after a number of password attempts (the “correct”
password was randomly chosen to be between the first one tried
and the third one tried). This means any attacker who connected
and made at least three login attempts was guaranteed a successful
login. The password they were accepted with was cached with
the attacker’s IP address, so that if they returned later they were
allowed in with only that same password. In terms of landing di-
rectories, when an attacker logged in they started in /root unless
they happened to have guessed the user name of a home folder we
randomly generated, in which case they started there. This round
consisted of 42 honeypots monitored for a period of 41 days.

Round 2. In the second round we changed the way we allowed
attackers in our honeypots by assigning specific credentials to each
honeypot instance. All user names were root since that was the
most commonly guessed user name in Round 1. Each password
was chosen randomly from the RockYou password leak [8] which is
one of the largest plain-text password leaks publicly available. We
sorted the passwords in this list by their popularity and excluded
the top 20 passwords, choosing a random password from the next
1,000 passwords. Our goal was to make it unlikely that an attacker
happens to guess the password on the first try, but still allow for
brute-force break-ins for attackers who use dictionaries with popu-
lar passwords. This allowed us to quantify how many attackers put
the time into brute-forcing, how many gave up quickly, and to what
extent this has an impact on the activity after successful login since
we are, in principle, dealing with more dedicated attackers. It also
allowed us to single out attackers that logged in successfully on
their first attempt. In these cases, it is likely that a brute-forcing bot
broke in, saved the credentials, and passed them along to a human
for later inspection. As in the previous round, this round consisted
of 42 honeypots monitored for a period of 43 days.

Round 3. In the last roundwe took inspiration from the recentwork
of Onaolapo et al. [21] who quantified the behavior of attackers on
stolen webmail accounts by “leaking” them to public hacker forums
and paste sites. As in the previous round, each honeypot was given
a single set of credentials. User names were generated randomly
from a list of celebrities with first and last names shuffled. In this
round attackers start in the home folder of the user we created
unless it is a Vanilla honeypot in which case there is no home folder
for their user name and they will start in /root. Passwords were
chosen randomly from the full RockYou list of 14,344,391 passwords.
These passwords should be significantly harder to brute-force by
chance in a reasonable amount of time, but also look like passwords
realistic users would have rather than using entirely random strings.

The full set of user names, passwords, and IP addresses of the
honeypots was posted to forums with a brief explanation. Similar
to Onaolapo et al., we claimed that we were in the possession of
thousands of stolen SSH credentials which we wanted to sell for
exclusive access. To prove that we indeed were in the possession of
these credentials, we provided a “sample” of 9 sets of credentials
which attackers could try out before contacting us for more.

We posted our message to eight different hacker forums, (e.g.
bestblackhatforum.eu, offensivecommunity.net, and nulled.
to). Since our posts are behind registration walls and do not follow a
well-defined format, we reason that the only successful connections
against the honeypots of Round 3 must be from attackers who read
the posts and decided to inspect the sample accounts.

A similar strategy was applied to paste sites where we posted the
other set of credentials and the same story. Paste sites have been
historically popular among hacking groups who break into websites
and services and then make their spoils available through public
pastes. As such, we reason that certain paste sites are monitored
by attackers as a way of discovering stolen credentials. We used
the most popular public paste sites, pastebin.com, pastie.org,
codepad.org, pasted.co, and slexy.org. We reason that the only
realistic way of finding our posts are through crawlers, which crawl
the recent pastes that are publicly available, search for specific
keywords, and alert their authorswhen potentially sensitive content
is discovered. At the same time, we consider it highly unlikely that
the bots have the ability to properly tokenize the text in arbitrary
posts and, in our case, initiate SSH connections. Therefore, as for
the credentials posted in our forums, we expect successful logins to
be initiated by human attackers. Finally, to increase the probability
that our posts would be captured by the aforementioned crawlers,
we developed a Selenium-powered automated poster which posted
new pastes twice a day.

Since we are actively advertising these credentials and do not
rely on passive scanning from attackers, for this round, we decided
to deploy our honeypots on a single public cloud (Linode) where
we utilized 18 honeypots (9 for forum posts and 9 for paste sites)
spread in three geographical locations (NA, EU, Asia).

2.5 Ethical Considerations
Before presenting our results, we want to touch upon our ethical
considerations. To understand how attackers break into systems
with weak credentials and how properties of these systems affect
their behavior, we cannot avoid deploying honeypots in the real
world and recording the actions of attackers on these honeypots.

Throughout our experiment, we have followed best practices
as described in prior honeypot-related work [2, 16, 20, 28, 29]. By
using medium-interaction honeypots that do not allow attackers to
execute their programs and tunnel traffic to the outside world, we
sacrifice some of our observing power in order to ensure that our
servers cannot be abused to attack third parties. We do not collect
any personally identifiable information from attackers and we only
use the collected IP addresses for geolocation and unique-counting
purposes. Moreover, we do not provide any software that attackers
could download and execute on their own machines and we do not
attempt to perform any sort of attack attribution. We submitted our
experiment description and protocol to our institute’s IRB which,

bestblackhatforum.eu
offensivecommunity.net
nulled.to
nulled.to
pastebin.com
pastie.org
codepad.org
pasted.co
slexy.org
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after evaluation, was deemed to be not "Human Subjects Related"
(the board decided that the commands that attackers send to our
honeypots do not constitute PII). Given the above, we are confident
that our study did not have any adverse effects, neither to the
attackers themselves, nor to any third-party service.

3 RESULTS
3.1 Effects of honeypot location
Figure 1a shows the average number of connections per day re-
ceived by honeypots in different locations during Rounds 1 and
2. Honeypots in North America (NA) were slightly more popular
than the rest. EU and Asia received roughly the same number of
connections, and those on our campus received slightly less.

The host the honeypot was on had a much larger impact than
geographic location. Figure 1b shows that honeypots on AWS re-
ceived significantly more connections than their counterparts on
Linode. Two factors may contribute to this result. First, AWS is
a larger and more popular cloud provider which makes them a
bigger target for attackers. Second, Amazon makes the IP ranges of
their service publicly available [3] so it is easy for an attacker to
scan the entire range for EC2 where they may assume that many
machines will be running SSH servers. Looking at hosts explains
the lower number of connections to the campus honeypots which
in fact received a similar number of connections compared to all
the Linode honeypots. This means the lower average in Figure 1a
is due to the increased popularity of AWS rather than a lack of
visibility or interest in the campus honeypots.

We noticed that the interquartile distance for honeypots on the
same hosting service is significantly smaller for the Linode and
Campus honeypots than the AWS honeypots. This is likely because
the Amazon IP ranges are broader.With IP addresses closer together,
an attacker who was scanning IP space and found one honeypot
address was likely to also find the others thereby decreasing the
variance for Linode and our campus.

Table 1 shows the total number of successful logins for each
experiment. For Rounds 1 and 2 we give the average number per
day as well to make up for the small difference in duration. The
per day average is not a fair comparison for Round 3 because we
leaked passwords at different times throughout the experiment
rather than waiting for attackers to guess passwords set up at
the start. By comparing the number of successful logins to total
login attempts in Round 2, we find that only 6.25% of attackers
are persistent enough to brute-force relatively common passwords.
This is an unexpected finding because, as described in Section 2.4,
we chose very popular passwords from password leaks which we
theorized would be incorporated in virtually all SSH brute-forcing
bots. One possible interpretation for this result is that there still exist
so many insecure systems that, at least for non-targeted attacks,
most attackers choose to proceed to other targets if their first few
attempts do not provide them with access.

The numbers for Round 3 show that we successfully avoided the
majority of brute-force attackers. Section 3.4 addresses how many
of these logins are due to humans lured by leaked credentials and
how many are due to exceptionally persistent or lucky brute-force
attempts.

Round Total Per Day Average
Round 1 210,848 5,142.63
Round 2 1,383 32.16
Round 3 - Forums 86 N/A
Round 3 - Paste Sites 7 N/A

Table 1: Number of successful logins in each experiment.

Round
Successful
Logins

Tunneling
Sessions

% of Successful
Logins

Round 1 210,848 139,746 66.28
Round 2 1,383 205 14.82
Round 3 93 16 17.20

Table 2: Number of tunneling sessions in each round.

3.2 Tunneling
When attackers break into a machine, in addition to exfiltrating
data and taking advantage of the machine’s local resources, they
can also use that machine as a stepping stone for conducting new
attacks, e.g., more SSH brute-forcing, tunneling of traffic, and DoS
attacks, while hiding their original IP address.

In this section we mostly focus on the tunneling activity from
Round 1 because it had amuch larger number of logins and a greater
proportion of tunneling activity as shown in Table 2. These Round 1
results apply to the most general attackers who gained easy access
to vulnerable machines.

When attackers used our honeypots as SOCKS proxies, cowrie
logged the destination of the proxied traffic but did not actually
forward the traffic to that destination (i.e. all connections fail before
a handshake can be performed). Interestingly attackers continued
to send requests despite the lack of appropriate responses.We found
that over 65% of all successful logins were used as SSH tunnels. In
addition we looked at attacker IP addresses who ran commands,
tunneled, or both to get an idea of attackers’ goals after logging
in. 50.44% of unique attacker IPs who attempted to SSH tunnel
did not run any commands. Meanwhile, 55.04% of unique IPs who
ran commands also used the honeypots for tunneling. We argue
that this is an important finding because it indicates that generic
attackers value vulnerable servers primarily as proxies. If half of
the attackers do not perform any commands once they break into
a honeypot, this can affect the usefulness of deployed honeypots as
ways of identifying attack trends. Contrastingly, we see that, for
Rounds 2 and 3, less than 20% of attackers attempted to establish
tunnels. This shows that bymaking it harder for an attacker to break
into a machine, we filter-out those that are primarily interested in
using honeypots as mere proxies. We discuss the implications of
these findings in Section 4.

The location of our honeypots had a noticeable impact on the
amount of tunneling activity. Figure 2a compares the number of
sessions used for tunneling as a percentage of the total number of
successful logins across the 7 locations/hosts. The Asia, Campus,
and EU honeypots had similar proportions of tunneling sessions,
but the NA honeypots had roughly 5% less. To account for the same
attackers logging in multiple times we also looked at the percentage
of successful login unique IPs that had tunneling activity. Figure 2b
shows that the EU honeypots had tunneling from more unique
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Figure 1: Number of connections per day by location and hosting provider for rounds 1 and 2.
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Figure 2: Fraction of successful logins used for SSH tunneling compared across locations and hosts.

attackers and confirmed that the NA Linode honeypots were used
less for tunneling.

To obtain a rough approximation of the type of traffic that attack-
ers were trying to tunnel through our honeypots, we analyzed the
ports and IP addresses of their destinations. Port-wise, we found
that 54% of forwarding traffic was standard web traffic (HTTP), 21%
was encrypted web traffic (HTTPS), and another 21% was e-mail
traffic (SMTP) demonstrating that most tunneling was done to dis-
guise web traffic. In terms of destinations, we recorded over 158,000
unique forwarding destinations, but we found that a large amount
of traffic was directed at specific targets. The top 4 destinations
(according to amount of traffic sent) accounted for more than 11
million requests. Among the top 20 destinations we found various
web hosting providers but also twelve SMTP servers (port 25) that
belong to Yahoo. Because of the great focus of attackers on Yahoo,
we hypothesize that this traffic may be related to the Yahoo data
breaches announced shortly before and then again after Round 1
of our experiment [13, 24].

Next to the destinations that received the most traffic, we also
discovered destinations that were common across a large number of
attackers. The top destination (according to number of attacker IPs)
was an IP owned by Kraft Foods Group that had requests from 1,331
unique IPs. The top 20 destinations also included several SMTP
servers (ports 110, 143, 465, and 587) belonging to Yahoo, Orange,
and Yandex, and a handful of servers in Ukraine and Bulgaria. The
number of unique source IPs suggests that these requests were part
of a coordinated attack against these destinations. We also found

that many attackers utilized ipinfo.io or httpbin.org. These
services provide attackers a simple tool to test the connection to
the outside world and to verify the public-facing IP address of the
compromised system. ipinfo.io also provides geolocation data
which may be useful for assessing a system’s value as a proxy.

Finally, by looking at the source location of attackers attempting
to tunnel traffic, we found patterns that differ from attackers that
ran commands. Figure 3 shows the top locations for attackers. We
found that the Netherlands was the largest contributer accounting
for nearly half of all tunneling sessions. Notably, there was no
crossover between the top 4 countries in each group of attackers.

3.3 Brute-force and prior knowledge attackers
As described in Section 2.4, in Round 2 of our experiment we
changed the setup so that attackers would have to brute-force the
username and password to gain access to our honeypots. Since we
used fairly common passwords we expected many attackers to suc-
cessfully break in, but not in their first few attempts. In this section
we investigate the sharing of credentials between IP addresses by
looking at the number of attackers who managed to log in to our
honeypots without making brute-force attempts (indicating that
they were already aware of the correct password).

Here we define a brute-force (BF) attacker as a unique IP ad-
dress that successfully logged in to a honeypot, but also had more
than five failed login attempts on that same honeypot. We call IP
addresses that successfully logged in with five or fewer failures,
prior knowledge (PK) attackers. Allowing a small number of failed

ipinfo.io
httpbin.org
ipinfo.io
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Figure 3: Top locations of attackers that ran commands compared with attackers that tunneled traffic.

attempts leaves room for human error, such as mistypes. We chose
five or less because it was the most conservative number of attempts
that encompassed every Round 3 attacker in the prior knowledge
group. Specifically, we noticed that attackers who logged in to our
Round 3 honeypots, made up to five failed login attempts before
successfully logging in. Given the difficulty of the passwords, we
consider it extremely unlikely that this small number of failed at-
tempts were from a BF attacker, hence we can conclude that five
unsuccessful attempts is still realistic for an attacker who already
knows the exact credentials.

Table 3 shows the breakdown of PK and BF attackers from the
total number of successful logins. The primary quantity available in
each cell of Table 3 is the number of unique IP addresses while the
second quantity in parentheses is the total number of sessions from
those IPs. We found that 40.6% of all successful attackers in Round
2 logged in without brute-forcing. This means that credentials must
have been shared from those that did brute-force. We also found
that the PK attackers were far more active with the credentials than
the BF attackers. PK attackers had 75% more sessions per IP and
90.3% of PK attackers ran commands on the honeypots (PK+CMD),
as opposed to only 4.7% of BF attackers (BF+CMD).

We propose two possible explanations about our attackers sup-
ported by these numbers. One is that attackers ran dedicated brute-
forcing machines that searched IP address spaces, tried credentials
until a successful login, then saved those credentials for a human
who—from another machine—either logged in themselves, ran a
non-interactive script, or initiated another bot to run commands.
The other is that attackers brute-forced credentials and then either
shared them with members of their hacking group or sold them to
other attackers (as we pretended to do in Round 3).

As we will further explore in the next section, we have devised a
three-step method for differentiating between human attackers and
bot attackers. By applying our method to the attackers described in
this section, we discovered that of the 40 human sessions found, 39
of them were from PK attackers and only 1 was from a BF attacker.
This further supports the theory that attackers move in two passes,
where dedicated bots brute-force credentials which are then passed
on for manual exploration by human attackers.

3.4 Human attackers versus bots
In this section we propose a method to classify attackers as humans
or bots and compare the number of humans across each round of

Round Login IPs PK IPs BF IPs PK+CMD BF+CMD
Round 2 431 (1,383) 175 (754) 256 (629) 158 (542) 12 (19)
Forums 41 (86) 41 (86) 0 (0) 34 (54) 0 (0)
Paste Sites 7 (7) 7 (7) 0 (0) 6 (6) 0 (0)

Table 3: Breakdown of successful login IP addresses with 5 or less
(PK) or more than 5 (BF) failed attempts per IP address. The values
in parentheses are the number of sessions from those IPs.

experiments. We only consider interactive attackers, i.e., attack-
ers who logged-in to one of our honeypots and then proceeded
to “type” a series of commands. We do not consider attackers who
use non-interactive sessions where one or more commands are
sent together with an SSH login attempt, e.g., ssh root@1.2.3.4
’bash -s’ < attacker_script.sh. Commands run in this way
are still considered in Section 3.5 (where we explore the types of
commands used by attackers), but we ignored them for the purpose
of distinguishing humans and bots. Similarly, we also ignore at-
tackers that only used the honeypot as an SSH tunnel (Section 3.2),
since there was no interaction with the honeypot itself.

Cowrie saved all sessions as interactive/non-interactive TTY logs.
For the interactive sessions, these logs contained timestamps for
every keystroke entered on the honeypot. We used three methods
to label a session as a human:

(1) The simplest and most effective was to check if the backspace
or delete special characters were in the TTY log. It is very
common for a human to make mistakes typing in a terminal
and correct them as they type, whereas a bot would not make
typos. Therefore if either of these characters are found we can
be confident we have found a human attacker.

(2) By parsing Cowrie’s TTY logs we were able to extract the time
deltas between keystrokes, taking themax delta per session. The
intuition is that humans type slowly and inconsistently while
bots enter commands almost immediately. As such, human
attackers will have a larger maximum delta between keystrokes.
For each honeypot we took the set of max deltas and applied
the median absolute deviation test to find outliers under the
reasonable assumption that the majority of SSH attackers are
bots (the alternative would be human attackers manually typing
password after password hoping to guess the right one). Given
this assumption, any outliers will be potential human attackers.

(3) Our final method was to apply a strict threshold for the max
deltas. If the max delta was greater than the threshold then we
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Figure 4: CDF of number of commands per session comparing hu-
mans to bots.

labeled the session as a human. The threshold was determined
to be 0.1 seconds by manually inspecting histograms of deltas
and examining sessions which were not marked as outliers, but
were still outside the pack of presumable bots.

We considered these three methods complementary and labeled
a session as belonging to a human if any one of these methods did
so as well.

Since we had a smaller number of successful logins in Round
3 and we expected those attackers to be human, we manually in-
spected all TTY logs for Round 3 using a tool that replayed the
session back in real time. We found that 42 out of 50 interactive ses-
sions were made by humans. Using this set as the ground truth for
humans we were able to test our algorithm and judge its accuracy
finding that our algorithm was able to detect all 42 humans as hu-
mans and all 8 bots as bots. Based on this result we were confident
applying our algorithm to Rounds 1 and 2 to classify the rest of the
attackers as humans or bots. Even if there are corner cases that our
algorithm does not capture, we argue that these would not result
in enough misclassifications to affect the general findings of our
analysis.

Table 4 shows the number of sessions labeled as humans for each
round and the percentages they represent of interactive sessions,
sessions with commands run, and all successful logins. Percent-
age of successful logins gave an idea of how many attackers were
humans running commands, but percentage of sessions with com-
mands may be the most fair comparison. This compared humans
attempting to run commands to bots attempting to run commands
(assuming all non-interactive sessions are bots) and ignored the
many sessions only interested in SSH tunneling and brute-force
bots that may do nothing but pass on credentials after logging in.

Based on our methods which were applied equally to each round
we found an increasing percentage of humans in each experiment.
This was expected in Round 3, but it was an interesting result for
Round 2. Recall that the change from Round 1 to Round 2 was that
we required attackers to brute-force the credentials. Therefore the
increase in percentage of humans indicated that persistent brute-
force bots were more likely to deliver credentials to a human than
the less persistent bots in Round 1. In fact more than 7% of Round
2 sessions executing commands were from humans.

In Round 3, we found that 19% of successful attackers did noth-
ing after logging in. We consider these to be attackers who found
the credentials and were curious enough to test them, but did not
continue to use the vulnerable system, perhaps because they were
suspicious or because they postponed their investigation for some

Round
Classified As
Humans

% of Interactive
Sessions

% of Sessions
with Commands

% of Successful
Logins

Round 1 434 4.55 0.93 0.21
Round 2 40 31.50 7.13 2.89
Round 3 42 84.00 70.00 45.20

Table 4: Number of sessions classified as humans by our algorithm
for Rounds 1 and 2 and by manual inspection for Round 3.

future time. Another 16% only used the honeypot as an SSH tunnel.
The remaining portion of sessions were those that ran commands,
and we found that humans made up 70% of this category. This
showed that leaking credentials on the web attracts a significantly
higher fraction of humans, but there will still be some bot activ-
ity which, because of the fact that parsing text and automatically
extracting credentials from a generic forum is highly unlikely, we
attribute to humans who chose to exploit these honeypots with
scripts or use them as web proxies.

3.5 Categorizing attacker actions
In this section we investigate the commands run by attackers after
they broke into our honeypots. We start by looking at number of
commands run and then go deeper by categorizing the types of com-
mands run in each session. We compare between sessions labeled
as humans and bots, as well as between the 3 types of honeypots
(Vanilla, Random, Curated). We do not compare across rounds be-
cause differences in round setup affected the way attackers logged
in and whether they were mostly humans or bots, but on a per
attacker basis it should not have impacted the way they interacted
with the honeypots after logging in.

Figure 4 shows the number of commands per session as a cumula-
tive distribution and compares between sessions labeled as humans
and bots. We found that about 80% of both types had less than 10
commands. It was somewhat surprising to find that humans and
bots ran a similar number of commands. Bots do not need a human
typing each command which allows them to have more, but they
are also more efficient. Each command is included to contribute
to the bot’s goal, whereas a human may execute more commands
than they need as they explore the system, make decisions, or make
typo commands which need to be retyped. What is strikingly dif-
ferent when comparing bots and humans is the smoothness of the
CDF. This is most likely due to natural variability of humans which
stands in sharp contrast with bots which will typically belong to
specific families thereby running the same number of commands
and producing vertical jumps in the cumulative distribution.

In order to understand what attackers did in their sessions, we
defined seven categories of commands. For each session we labeled
it with a category below if it contained at least one command that
belonged to that category. Therefore, it was possible for a session
to be labeled with anywhere from 0 to 6 categories.

• Users: Changing the password of the victim user account and/or
creating a new user. These attackers attempt to ensure future
access to the system by making sure there is an account to which
they know the password.

• Files: Navigating directory tree, listing and opening files. These
attackers interacted in some way with the file system of the
honeypot. The files they looked at or used may have been their
own.
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• System: Investigating various system information such as, top,
free, uname -a, cat /proc/cpuinfo, etc. These attackers tried
to learn additional details about the system they had broken into,
either to determine its value as a resource or to decide the best
plan of attack.

• Malware: Downloading suspicious files from remote sources
with wget, ftp, etc. These attackers attempted to fetch what was
most likely malware from other machines.

• Defenses: Stopping defensive services such as firewalls. These
attackers attempted to maximize the impact of their attack by
first stripping away defenses.

• Our Files: Changing directory into the home folders of our fake
users. These attackers show some interest in the data on the
honeypot. We argue that the only reason an attacker would
change directory to a user’s home folder is if they intended to
look at the files contained within. Instead of logging in and only
following rote plans to download and execute malware, they
show some interest in the value the victim machine might have
for the information on it.

In Round 3 the attackers started in the home folder of the user
whose credentials we leaked. This meant they did not need to
change directory into the home folder of a user in order to see the
files we created. To compensate for this, we manually inspected the
TTY logs of the Round 3 attackers and labeled them as to whether
or not they looked at our files. These sessions were added to the
“Our Files” counts in Table 5. On the Vanilla honeypots where we
did not generate any files, we still included any attempts to list files
in a users’ home directory since it conveyed the attackers’ intent
to investigate files if there were any.

Table 5 shows the percentage of sessions labeled with each cate-
gory, split by human and bot attackers, and compared across the
three types of honeypots. The first interesting result is that while
human attackers were significantly more likely to change the pass-
word after logging in, it was uncommon across the board. This is in
stark contrast to the findings of Nicomette et al. [20] where every
attacker began by changing the password. Changing the password
and/or adding a back-door account make it more obvious that an
attack has occurred on a system in regular use. Our results suggest
that attackers have adopted stealthier approaches in the last 10
years. This is likely due to increasing virtualization of web servers
which makes it easier for an admin to recover a system after being
locked out by an attacker. An attacker often has more to gain by
maintaining their access to the system especially if they plan to
add it to a botnet.

For bot attackers, “Files” and “Malware” were the largest cate-
gories. This showed that themajority of bots attempted to download
and run malware, and only interacted with files related to their
scripts. Some downloads appear to have failed due to connection
problems with the remote hosts since their bots gave up after the
attempt, but others continued to execute their downloaded files. We
found that about 17% of bots did some sort of System investigation.
While the value to a human attacker is clear, we were surprised to
find so many bots in this category. It may be that the bots contained
logic which allowed them to change attacks based on simple system
information or that this information would be made available to

Bots Humans
Category Vanilla Random Curated Vanilla Random Curated

Users 0.48 0.02 0.59 11.36 14.86 15.38
Files 70.82 72.73 70.91 59.09 65.71 67.79

System 16.33 16.12 17.29 72.73 60.57 66.35
Malware 74.24 74.31 72.50 31.06 35.43 35.10
Defenses 5.11 5.49 5.7 2.27 1.14 1.44
Our Files 0.00 0.00 0.01 10.61 8.57 14.42

Table 5: Percentage of sessions labeled with each category. Separated
by human and bot sessions and by type of honeypot.
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Figure 5: CDF of the number of commands executed by attackers who
inspected a user’s home directory. Each line represents sessions on one
of the three honeypot types.

the bot master for statistics, future exploitation, or botnet-renting
purposes.

The human side of the table tells a different story. One of the
biggest differences was the “System” category which was about 4
times larger for humans than it was for bots. This makes sense as
human attackers make risk-to-value assessments during the attack
so it would be useful for them to learn about the compromised
system and decide on the best use for it. Human attackers also had
a much smaller percentage of “Malware” commands and roughly
10% of them investigated at least one home folder of a user on
the system. This demonstrates that humans were more focused on
the information on the honeypot. Whether they were satisfying
curiosity or planning on stealing information, their intentions were
in stark contrast to those of the bots. Looking at the “Our Files”
category, we found that of the 61 total sessions, 59 of them were
classified as humans. Given the much larger number of bots and the
fact that those two sessions could have been misclassified humans,
this showed that essentially no bots have any interest in users’ files
present on the machine.

After categorizing commands and finding attackers interested
in the files we placed on the honeypots, we revisited the number
of commands run per session. The “Our Files” category allowed
us to quantify whether attackers were interested in the files on
the system. However, it did not provide a satisfying answer as to
the impact of the different types of honeypots on the attackers’
behavior after they looked at our files. To quantify the impact of
the files we created, we examined the number of commands per
session. The intuition is that an attacker who looked at our files
and found them convincing may spend more time investigating. In
Figure 5 we look at number of commands run in sessions which
were labeled with “Our Files.” This is a somewhat limited set of 61
sessions from Table 5, but it does cover all three honeypot types.
These were the attackers that cared about files on the system and
the total number of commands they ran gave us a metric to judge
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the effect of their exploration on their behavior. We found that
Vanilla and Random honeypots had similar numbers of commands,
but the curated honeypots attracted more commands from attackers.
This is an important finding because it allows us to conclude that,
in order to entice human attackers to interact for a longer time
with a honeypot, one must produce file populations that mimic real
systems.

3.6 Attacker case studies
In this section we examine specific examples of typical human at-
tacker sessions. The commands that were executed are shown in
Appendix A. Each session started in the home folder of the compro-
mised account and began by listing files. Session Human_A then im-
mediately tried to install a visual file manager, midnight commander
(mc). Each attacker continued to explore specific files/folders which
gives us an idea of the names/locations which were most enticing.
Human_B explored Videos, Downloads, Pictures, and opened the file
Downloads/20161216_work.txt. Human_A explored Documents
and was then drawn to a folder named IMPORTANT. Human_C also
looked in Documents where they tried to open faq-congo.pdf and
index.html. These three attackers were all on Curated honeypots
and showed that Documents and Downloads were particularly en-
ticing. Human_D was on a Random honeypot and investigated the
randomly generated directory situation_baghdad_047581. They
then tried copying it to the root directory with scp and while they
discovered scp would not work, the attempt suggests an interest in
exfiltrating the entire directory. While three of these attackers had a
few other exploratory commands, it is clear that their main interest
was in users’ files. These types of attackers are the most dangerous
to systems with sensitive information, and also the most vulnerable
to tripwire/decoy file based intrusion detection systems [7, 31, 34].

We also examined sessions from bot attackers which due to space
limitations we cannot fully describe (the commands of popular
sessions are available in the Appendix). One key observation from
comparing these sessions to the human sessions is that for bots,
population and believability of the file system is irrelevant. Their
actions are generic (e.g. downloading files and inspecting the system
specifications) and unlike the human sessions, they do not include
back and forth interaction with the compromised system.

4 DISCUSSION
In this section we present a series of key takeaways distilled from
our experiments in Section 3 and then briefly describe the limita-
tions of our study and potential directions for future work.

Key takeaways
• Location and host matters. Honeypots hosted in AWS in NA

and Europe received more connections than the rest (Section 3.1).
As such, if someone is operating on a constrained budget and
wants to maximize the number of brute-forcing IP addresses
collected, AWS appears to be the infrastructure that will facilitate
this.

• Most attackers are opportunistic. Themajority of brute-force
attacks are very opportunistic to the extent that unless the pass-
word is an obvious one (allowing them to break-in in their first
few attempts) they will move to the next target (Section 3.1).
Our honeypots that had a password that was not in the top 20

most common passwords of users were broken into two orders
of magnitude less than the ones that indiscriminately allowed at-
tackers to login as long as they were willing to try three different
passwords.

• Difficulty of break-in correlates with human activity. In
Section 3.4 we showed that the fraction of human attackers
was much larger in Round 2 than in Round 1 with evidence of
credential sharing between the IP address that brute-forced a
password and the human attacker who later came to inspect
the compromised machine. Together with our earlier takeaway
point, this suggests that when deploying honeypots one must
strike a balance between choosing the greatest possible number
of attackers and choosing to attract human attackers.

• Most attackers are bots.When deploying honeypots in generic
IP address space, one must expect that the majority of break-ins
will originate from bots which will not necessarily be followed
by a human attacker (Section 3.3). This indicates that if one is
interested in studying the attack patterns of humans (what they
do once they break into a machine) they will have to deploy a
large number of honeypots and use filters to remove automated
bot-related activity.

• Half of the attackers only break in to honeypots to use
them as proxies. Even though this could be seen as a negative,
this would in fact allow defenders to monitor the web behavior
of attackers, without the need of ISP collaboration, and therefore
identify web attacks (e.g. password brute-forcing on popular
websites) as they are happening. Note that, for ethical reasons, in
our deployment we did not actually forward the proxied requests
of attackers to their final destinations.

• Hacking forums and paste sites can be used to learn more
about human attackers. Through our experiment with “leak-
ing” honeypot credentials to hacking websites and paste-sites,
we discovered that attackers indeed read our posts and proceeded
to log in to our honeypots. Moreover, through manual labeling,
we confirmed our intuition that the majority of these attackers
interacting with the honeypots were human. Since researchers
are already monitoring underground forums for a variety of pur-
poses, e.g., identifying real break-ins [17], our results indicate
that such forums could be used as one more source for gathering
threat intelligence from real attackers and not scripted bots.

• Humans care about user files, bots do not. In Section 3.5
we witnessed that bots exhibit near zero interest in what files
are present on user machines. Contrastingly, as much as 14% of
human attackers inspected the file system and interacted, to a
certain extent, with user files. These findings have implications
on intrusion detection systems, specifically those that rely on
booby-trapped files, such as, tripwires and decoys [7, 31, 34]. Our
findings show that these systems would not be able to detect
bot break-ins, suggesting that there need to be other monitoring
systems in place that can account for malicious, bot-specific,
behavior.

• Curated file systems entice human attackers to interact
more with them. Spending time to create file systems with re-
alistic looking files and directory structures pays dividends when
it comes to enticing attackers to interact with them (Section 3.5).
This interaction translates to human attackers spending more
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time on a honeypot which is desirable, both from a research
perspective, as well as giving more time for defenders to isolate
that attacker from the rest of their network.

Limitations and Future Work
Cowrie, like any other simulating medium-interaction honeypot, is
likely to be fingerprintable by dedicated attackers. It is therefore
possible that our studywas not able to capture a fraction of attackers
who, upon the discovery of cowrie, logged out. While this could
introduce a source of bias in our results, it is important to note that
any bias would be present across all deployments/rounds/locations.
As such, we argue that despite cowrie’s potential limitations, we
are still able to compare the activity of different attackers when
exposed to different underlying environments. In future work, we
plan to repeat our experiments with high-interaction honeypots,
utilizing tools such as Bifrozt [15] or Dockpot [1], and compare our
findings with the ones described in this paper.

Similarly, our results can generalize to the general public to the
extent that honeypots located on public clouds and university cam-
puses attract similar types of abuse as those located in companies
and organizations. We are certain that, in addition to generic bot
attackers, large companies experience much more targeted attacks
that may deviate from the ones recorded by our honeypots. At the
same time, we expect that these targeted attacks are, primarily,
human driven (as opposed to bot-driven) and thus our observations
about human attackers and how they interact with machines that
they have compromised may, in fact, be similar to these targeted
attacks. One of the reasons why we are open-sourcing our code
and data is to allow researchers working in the industry to repeat
our experiments and report their findings.

5 RELATEDWORK
The area of intrusion detection in general and honeypots in partic-
ular, has a rich history of books, papers, deployments, and lessons
learned from organizations which deploy individual honeypots as
well as networks of honeypots.

The most popular project related to honeypots and networks of
honeypots (honeynets) is the Honeynet Project which was founded
in 1999 [25]. In [32], Spitzner described the implications of running
networks of honeypots (honeynets) and described the organiza-
tion’s plan for the future. The Honeynet Project also hosts a series
of whitepapers on attacker activity [26] that researchers were able
to uncover because of honeypots as well as a multitude of deploy-
able software related to honeypots. Spitzner [33] as well as Niels
and Holz [27] provide complete treatments of honeypot types, de-
ployment strategies, the detectability of honeypots and case-studies
of forensic analyses that honeypots enable.

In 2004, Raynal et al [29] present a forensic analysis of 24 hours
worth of network traffic to and from their honeypot and analyze
the corresponding host-level activity. In the same year, Dacier et al.
describe their analysis of the data collected by a virtualized network
of honeypots and present, among others, the geographical informa-
tion of attackers, their operating systems, and the ports that they
target [11]. In 2006, Alata et al. [2] described their experience with
the deployment of a single high-interaction honeypots for 131 days
receiving connecting attempts from a total of 480 different IP ad-
dresses. A year later, Ramsbrock et al. [28] monitored SSH break-ins

to four high-interaction honeypots for a month using accounts with
easy-to-guess passwords. They presented the number of successful
login attempts, commonly attempted credentials and the types of
activity that attackers performed when they broke in. Nicomette et
al. recount their experience running a high-interaction honeypot
for more than a year [20]. Among others, the authors discovered
that attackers are relatively unsophisticated (types of commands
and errors incurred) and that they can identify types of attackers
by the password dictionaries they use to brute-force their way in
their honeypot. Koniaris et al. describe the findings of deploying the
Kippo honeypot, on a virtual private server for four months [16].
Canali and Balzarotti investigated the post-exploitation actions of
attackers and their goals when targeting vulnerable web applica-
tions [9], identifying common patterns of abuse.

In recent years, in addition to the traditional server honeypots
(the topic of this paper), researchers have proposed honeypots
for new and emerging technologies, such as, VoIP [14], instant
messaging [5], mobile telephony [6], smartphones [18], SCADA
systems [35] and even honeypot-like listings to find scammers on
Craigslist [23]. Recently, Farinholt et al. presented the results of
a study where they observed the activities of amateur operators
of DarkComet, a popular malicious remote administration tool
(RAT) [12]. Among others, the authors noted that RAT operators
interacted more with the virtual machines that had the most file
system depth. Our findings support this observation for the human
portion of attackers breaking into our SSH honeypots suggesting a
generic trait of human attackerswho tend to exhibit more “curiosity”
about the systems they compromise than bots.

The main difference between most of the aforementioned work
and ours is that, in addition to performing an observatory study
(where we set up honeypots and describe our findings) we change
experimental parameters about our population of honeypots (i.e.,
their location, difficulty of break-in, and file population) and observe
how these changes affect the actions of attackers who break into our
honeypots. Moreover, inspired by the work of Onaolapo et al. [21],
we actively advertise a set of honeypots to underground forums
and paste-sites and describe how these attackers are different than
the ones who autonomously break into our honeypots.

6 CONCLUSION
In this paper, we investigated how certain underlying properties of a
system affect the actions of attackers who break into that system. To
that extent, we conducted a four-month study where, through the
deployment of 102 honeypots, we quantified whether the difficulty
of break-in, the location of a system, and the population of files in
a filesystem had an effect on attackers. Our results showed that the
majority of attackers are bots which are interested in tunneling traf-
fic and making our honeypots part of botnets and are not affected,
with the exception of location, by other underlying parameters. At
the same time, we found that harder-to-compromise systems have
a higher probability of being later inspected by human attackers
who are, in fact, interested in user files and tend to spend more time
examining the system when the honeypot presents a realistic set
of files and directory structures. Our findings can be used to guide
future honeypot deployments and motivate the need for layered
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intrusion detection systems that can account for bot-specific, as
well as human-specific, activity on compromised hosts.

Availability:To rekindle interest in honeypot research and to allow
other researchers to identify patterns that we may have missed, we
will be open-sourcing all of our code and data.
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A ATTACKER SESSIONS

Human_A

ls
mc
sudo apt-get install mc
apt-get install mc
mc
htop
top
ls
cd Do
cd /home/dickie/Documents
ls
cd /home/dickie/Documents/IMPORTANT
la
ls
cd /home/dickie/Documents
ls
ping www.terra.es
ifconfig
sudo ifcofnig
sudo ifconfig
exit
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Human_B

ls
ls /home/alexis/Videos
ls /home/alexis/Downloads
less Downloads/20161216_work.txt
cat /home/alexis/Downloads/20161216_work.txt
ls /home/alexis/Downloads
ls
ls /home/alexis/Pictures
exit

Human_C

ls
ls
cd Do
cd /home/debby/Documents
ls
vi /home/debby/Documents/faq-congo.pdf
free
free -h
ping www.terra.es
ping www.elmundo.es
wget
wget www.terra.es
ls
vi /home/debby/Documents/index.html
sudo vi /home/debby/Documents/index.html
vi /home/debby/Documents/index.html
nano
ed
apt-get
sudo apt-get vi
apt-get vi

Human_D

ls
cd /home/ted/situation_baghdad_047581
ls
scp
scp /situation
cd /home/ted
scp /situation_baghdad_047581/ /
sudo apt-get install nbtscan
apt-get install nbtscan
nbtscan 45.118.133.235
dc
stop
shutdown

Bot session repeated 1,457 times.
Downloading and running executables.
wget http://212.92.127.196/.1 -O /tmp/..1
wget1 http://212.92.127.196/.1 -O /tmp/..1
chmod +x /tmp/..1
/tmp/..1 &
wget http://212.92.127.196/.2 -O /tmp/..2
wget1 http://212.92.127.196/.2 -O /tmp/..2
chmod +x /tmp/..2
/tmp/..2 &
wget http://212.92.127.196/.3 -O /tmp/..3
wget1 http://212.92.127.196/.3 -O /tmp/..3
chmod +x /tmp/..3
/tmp/..3 &
...
And so on up to file /tmp/..12

Bot session repeated 1,261 times.
Covers tracks and gathers information.
unset HISTORY HISTFILE HISTSAVE HISTZONE

HISTORY HISTLOG WATCH
history -n
export HISTFILE=/dev/null
export HISTSIZE=0
export HISTFILESIZE=0
rm -rf /var/log/wtmp
rm -rf /var/log/lastlog
rm -rf /var/log/secure
rm -rf /var/log/xferlog
rm -rf /var/log/messages
rm -rf /var/run/utmp
touch /var/run/utmp
touch /var/log/messages
touch /var/log/wtmp
touch /var/log/messages
touch /var/log/xferlog
touch /var/log/secure
touch /var/log/lastlog
rm -rf /var/log/maillog
touch /var/log/maillog
rm -rf /root/.bash_history
touch /root/.bash_history
history -r uname
free -m
ps -x
cat /proc/cpuinfo
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