
Monkey-in-the-browser: Malware and Vulnerabilities in
Augmented Browsing Script Markets

Steven Van Acker, Nick Nikiforakis, Lieven Desmet, Frank Piessens, Wouter Joosen
{firstname.lastname}@cs.kuleuven.be

iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium

ABSTRACT
With the constant migration of applications from the desk-
top to the web, power users have found ways of enhancing
web applications, at the client-side, according to their needs.

In this paper, we investigate this phenomenon by focusing
on the popular Greasemonkey extension which enables users
to write scripts that arbitrarily change the content of any
page, allowing them to remove unwanted features from web
applications, or add additional, desired features to them.
The creation of script markets, on which these scripts are
often shared, extends the standard web security model with
two new actors, introducing novel vulnerabilities.

We describe the architecture of Greasemonkey and per-
form a large-scale analysis of the most popular, community-
driven, script market for Greasemonkey. Through our anal-
ysis, we discover not only dozens of malicious scripts wait-
ing to be installed by users, but thousands of benign scripts
with vulnerabilities that could be abused by attackers. In
58 cases, the vulnerabilities are so severe, that they can be
used to bypass the Same-Origin Policy of the user’s browser
and steal sensitive user-data from all sites. We verify the
practicality of our attacks, by developing a proof-of-concept
exploit against a vulnerable user script with an installa-
tion base of 1.2 million users, equivalent to a “Man-in-the-
browser” attack.

Keywords
Augmented browsing; browser extension; Greasemonkey; script
market; userscripts.org; malware; vulnerabilities; DOM-based
XSS; large-scale analysis

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection; H.3.5 [Information
Storage and Retrieval]: Web-based services

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS’14, June 4–6, 2014, Kyoto, Japan.
Copyright 2014 ACM 978-1-4503-2800-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2590296.2590311.

The web has evolved from a collection of purely static
pages to entire web applications, making the browser the
medium of choice for delivering new software and services.
With this migration, many power users who used to cus-
tomize their operating system and install their applications
of choice, now feel the desire to customize the applications
inside their browser, in a way that fits their needs. These
customizations usually result in an enhanced form of brows-
ing the web, which is called “augmented browsing”.

Probably the most well-known instance of augmented brows-
ing software is the Greasemonkey [8] browser extension, which,
at the time of this writing, ranks fifth in the list of most pop-
ular Firefox extensions [20]. Greasemonkey users can write
user scripts, i.e., small JavaScript programs, that manipu-
late loaded webpages on the client-side in any way desired.
User scripts can, among others, hide ads, change the content
layout of a page, and make cross-origin HTTP requests to
create client-side mashups. In contrast with typical browser
extensions, user scripts are comprised of a single JavaScript
file and are not packaged in any way, making them easy to
inspect and modify.

Due to the popularity of Greasemonkey and the large
number of user scripts created for it, the Greasemonkey de-
velopers created userscripts.org [21], a community-driven
script market, on which members can exchange user scripts.

The creation of a script market brings along some unique
security issues, because it extends the standard web attacker
model with new actors. In the regular model, a website is
visited by a client and an attacker can either attack the
website by exploiting server-side vulnerabilities, or the vis-
itor through client-side vulnerabilities, like XSS or CSRF.
In the augmented browsing scenario, however, the model is
extended with the inclusion of a user script in the visitor’s
browser, a script market, and a script author creating and
sharing user scripts through the script market.

In this paper, we perform an in-depth analysis of this ex-
tended script ecosystem. First, we consider the script author
as a malicious actor, having the ability to create user scripts
with malicious functionality, and upload them to the script
market where they may be downloaded and installed by vic-
tim users. We report on the prevalence of malicious scripts,
the discovered malice, and whether this malice was identified
by the userscripts.org community.

Second, we shift our focus to the possibility of conduct-
ing attacks on poorly coded user scripts. We find many
instances of benign scripts whose authors, even though they
had no bad intentions, unwillingly introduced vulnerabilities
which could be used to attack websites that are otherwise

secure. Using straightforward static-analysis techniques, we
identify more than 100 user scripts, with millions of instal-
lations, vulnerable to DOM-based XSS [12]. We also show
that a certain type of user script vulnerability can be abused
to launch attacks even against the Greasemonkey engine it-
self, leading to powerful global XSS attacks, where an at-
tacker can steal a user’s data from all sites.

Our main contributions are:
1. We evaluate the Greasemonkey browser extension, fo-

cusing on the functionality with negative security con-
sequences.

2. We analyze the most popular, community-driven script
market for Greasemonkey and describe the difficulties
of relying on the community to define and identify ma-
liciousness.

3. We demonstrate novel attacks that take advantage of
benign Greasemonkey scripts to attack, otherwise se-
cure, websites.

2. GREASEMONKEY
In this section, we describe the Greasemonkey engine, its

uses, and the structure of Greasemonkey scripts. Finally we
examine how Greasemonkey affects the security and isola-
tion of scripts in the browser.

2.1 Greasemonkey engine
Greasemonkey is a popular browser add-on for augmented

browsing. Using Greasemonkey, users can, on the client side,
modify the appearance and functionality of any webpage.
This is done by JavaScript programs that are injected in ar-
bitrary webpages and have access to privileged functionality,
not available to normal JavaScript programs. Through these
Greasemonkey scripts and with the help of the browser’s
DOM, users can arbitrarily edit a webpage, including the
removal of content, e.g., ads, or the addition of new content,
e.g., adding missing functionality to a web application, or
creating mashups using content from multiple domains.

While Greasemonkey was originally a Firefox-specific ex-
tension, there are also ports of the extension to other browsers,
like Tampermonkey for Google Chrome. According to the
extension markets of Mozilla Firefox and Google Chrome, at
the time of this writing, there are almost three million users
who have the Greasemonkey and Tampermonkey extensions
installed. Moreover, due to the popularity of the extension,
a subset of the Greasemonkey functionality is, by default,
supported in many modern browsers, where Greasemonkey
scripts are treated as a special case of browser extensions.

In general, Greasemonkey scripts can be considered light-
weight browser extensions. Users can write their own scripts,
or find scripts written by other users, either dispersed on the
web, or concentrated on community-driven script markets,
much like the aforementioned popular extension stores. As
further explained in the next section, Greasemonkey scripts
are single-file JavaScript programs, without Manifest files
and directory structures, which users can inspect and edit
from within the Greasemonkey extension.

2.2 Greasemonkey scripts
In this section, we demonstrate the basic structure and

syntax of Greasemonkey user scripts, and the necessary con-
cepts for the comprehension of the rest of the paper.

Listing 1 Example of a Greasemonkey user script

// == UserScript ==
// @name Hello World
// @description Description of this script
// @namespace http :// author.com/gmscripts
// @include http :// example.com/*
// @include http ://*. example.com/*
// @exclude http :// login.example.com/*
// @grant GM_xmlhttpRequest
// ==/ UserScript ==

alert("Hello World");
GM_xmlhttpRequest ({

method: "GET",
url: "http ://www.shopping.com/",
onload: function(response) {

alert(response.responseText);
}

});

2.2.1 Structure of scripts
Listing 1 shows a simple example of a user script. Notice

that before the actual functionality of the script, there is
script-specific meta-data in the form of comments enclosed
by // ==UserScript== and // ==/UserScript==

The Greasemonkey engine will recognize the comments
containing @ signs and read-in the appropriate values. The
@name and @description directives specify the title of a
script and a user-readable description of what the script
does. The @include and @exclude directives allow the script
authors to specify the domains and webpages that their
script should execute on. The @grant directive specifies that
the listed function should be added to the Greasemonkey
sandbox.

The actual code of the user script starts where the meta-
data comment block ends. In our example, the first call
is to the standard alert function provided to JavaScript
from the Browser Object Model and used to display mes-
sage boxes to the user. The second function call, however,
is towards a special Greasemonkey-specific function. Grease-
monkey API functions have the GM_ prefix and are typically
able to do operations not allowed by standard JavaScript
code. In this case, the script performs a cross-domain HTTP
request to http://www.shopping.com, an operation that is
otherwise forbidden by the Same Origin Policy (SOP), the
browser’s default security policy, for security and privacy
reasons. Other Greasemonkey functions allow a user script
to store and retrieve persistent data, access script-specific
resources, and register menu commands in the browser.

Figure 1 shows the Greasemonkey dialog that is displayed
to the user trying to install our example user script. Notice
that at the bottom of the dialog, the user is warned that
the scripts can violate the user’s security and privacy, and
that the user is supposed to install scripts only from trusted
sources.

2.2.2 Important meta-data
In this section, we expand upon some of the aforemen-

tioned Greasemonkey directives with security and privacy
consequences.

@include. As described earlier, Greasemonkey consults the
@include directive to determine which pages a user script

Figure 1: Greasemonkey Script Installation Dialog

should be injected in. Greasemonkey uses regular expres-
sions to match the @include header against the entire URL,
allowing a lot of flexibility. The script author might for in-
stance add @include http*://*.example.com to allow the
script to run on both HTTP and HTTPS versions of the
example.com sub-domains, and the script author is even al-
lowed to specify @include * to run the script on any web-
site. If no @include directive is present, Greasemonkey will
default to @include * for that user script.

@grant. Recognizing the merits of the least-privilege princi-
ple, Greasemonkey allows script authors to specify which
functions of the Greasemonkey API should be added to the
Greasemonkey sandbox, using the @grant header.

Consider again the user script listed in Listing 1, display-
ing the usage of this @grant header to request access to the
GM_xmlhttpRequest function. The special directive @grant

none is used to indicate that the script uses no Greasemon-
key API functions at all, and thus none should be added
to the sandbox. In the absence of @grant headers, Grease-
monkey will attempt to infer the necessary API functions
by analyzing the user script.

2.3 Attack surface
At this point, it should be evident that the extra func-

tionality of user scripts, unfortunately comes with room for
extra vulnerabilities. We consider three different attack sce-
narios: a) malicious user scripts abusing the pages in which
they are injected, b) attackers abusing benign but vulnera-
ble user scripts to attack webpages and, c) malicious pages
trying to abuse the Greasemonkey engine and gain access to
privileged functions.

In the first scenario, a victim installs a user script that
advertises some functionality, e.g., automatically hiding ads
on all webpages. This script may be a trojan horse which,
next to hiding ads, steals private data from pages, the user’s
cookies, or even capture all of the user’s keystrokes.

In the second scenario, an attacker can take advantage of
vulnerabilities introduced by user scripts on pages that oth-
erwise would have no exploitable vulnerabilities, e.g., the
exploitation of a DOM-based XSS vulnerability on a web-
mail application introduced by the added functionality of a
Greasemonkey user script.

In the third scenario, an attacker can take advantage of
user script vulnerabilities, not just to inject code in a be-

nign page, but to inject code in Greasemonkey’s sandbox.
Greasemonkey makes use of sandboxing to protect the priv-
ileged GM_ functions from possibly malicious scripts running
on a website. Despite this sandbox and additional stack-
inspecting mechanisms of Greasemonkey, a poorly-written
user script can still introduce unsafe code in the sandboxed
environment, e.g., by eval-ing a string from a malicious page
without performing the proper sanity checks. When this
happens, a malicious script can get access to the powerful
Greasemonkey API and circumvent the SOP.

3. COMMUNITY-DRIVEN
SCRIPT MARKETS

Script markets facilitate the sharing of Greasemonkey scripts
by providing script authors with a disseminating platform
and a feedback mechanism, and consumers of scripts with
comments and ratings about the quality and utility of a par-
ticular script.

We retrieved a total of 86,358 user scripts together with
their accompanying meta-data, from userscripts.org. This
meta-data includes how many times a user script has been
installed, and whether or not the user script was flagged as
“Harmful” by the community.

More information about the dataset can be found in [23].

4. MALWARE ASSESSMENT
Greasemonkey scripts are more powerful than traditional

JavaScript programs, because they can manipulate and re-
trieve private data in a user’s browser without SOP restric-
tions. Consequently, such scripts can be an attractive infec-
tion vector for malware authors, who can create malicious
user scripts and trick users into installing them.

In this section, we discuss malware in Greasemonkey user
scripts and how the userscripts.org community is cur-
rently attempting to deal with malicious scripts.

4.1 Userscripts.org issue reporting
The userscripts.org community website has a community-

based, manual reviewing process to detect malicious user
scripts. When a malicious user script is detected, the user
can flag it as “harmful” and, optionally, explain her vote in
the comment section.

In our dataset of 86,358 scripts, 626 (0.7%) are marked
as “harmful” by at least one user of the userscripts.org

community. Of those 626 scripts, 592 have at least as many
votes in favor of “harmful” as votes against it.

0 100 200 300 400 500

Not malicious
Steals credentials

Includes 3rd party JS
Redirects

Misbehaves

466
70

25
22
9

Amount of “harmful” scripts

Figure 2: Categories of malware found in the 592
scripts labelled as “harmful” in the userscripts.org

dataset. Almost 80% is harmless.

To determine the quality of this manual review process, we
performed a manual analysis of these scripts to determine
what users regard as “harmful”. From the 592 “harmful”

scripts, we could not find any trace of malice in 466 (78.7%)
of them. For our purposes, we defined malice as the attempt
to steal private data from a user, or trick the user into per-
forming an action with potential monetary benefits for the
attacker. We will refer to the remaining 126 scripts that do
contain malware, as the verified harmful dataset.

A breakdown of the entire harmful dataset according to
the reason the scripts were flagged, is shown in Figure 2. The
largest fraction with verified maliciousness is comprised by
70 scripts containing malware designed to steal credentials
in some form, from the user. The next largest fraction of
scripts (25) includes third party JavaScript into a loaded
page [16]. Twenty-two scripts simply redirect the user to
another website, with the possible intent to lure the user
into a drive-by-download scenario and install malware that
way. Only five of these “redirect” scripts were reported by
users to be the cause of a drive-by-download attack. Finally,
there remain nine scripts which “misbehave”, and do not fit
in the previous categories.

Shifting our attention to the 466 benign scripts that were
mislabeled as malicious, the given reasons indicate that the
concept of “harmful” is not always clear to the members of
the community, and that there should be a clearer definition.

A more detailed breakdown of the reported malware, as
well as observations that can help in the detection of mal-
ware, can be found in [23].

5. ATTACKING WEAK SCRIPTS
In the previous section, we discussed scripts that are ma-

licious by design, giving their authors the ability to harm
those scripts’ users. Because Greasemonkey injects user
scripts into visited webpages, these user scripts unfortu-
nately increase the attack surface of the user.

In this section, we discuss two vulnerabilities that occur in
user scripts: DOM-based XSS and overly generic @include

directives. Through these vulnerabilities, an attacker can
trick a victim’s browser into executing code on webpages
onto which a user script acts, or even any webpage he wants,
and potentially even gain access to powerful Greasemonkey
API functions.

5.1 DOM-Based XSS
DOM XSS vulnerabilities present in user scripts are more

dangerous than regular DOM XSS vulnerabilities because
the vulnerability will be injected into any page on which
the user script code is included. Attackers can then exploit
these vulnerabilities and gain access to the Greasemonkey
API, which is not bound by the SOP.

DOM-based XSS analysis setup. To determine whether
any DOM-based XSS vulnerabilities occur in our user scripts
dataset, we screen all scripts using a lightweight static-analysis
method. Using SpiderMonkey [19], we parsed all scripts in
our dataset and obtained a simplified AST for each one of
them. Using a list of sources and sinks [7], we searched for
sources used directly in the argument list of sinks. As such,
all the results reported in the next sections are lower bounds
of vulnerabilities.

Results. The results of our DOM-based XSS analysis on
the full dataset retrieved from userscripts.org, are shown
in Table 1. From the 86,358 scripts in our dataset, our

document window Total
.body .location other .name

doc.write(x) 0 1 2 0 3
eval(x) 3 0 76 0 79
innerHTML 721 83 846 5 1,654 (*)
Total 724 84 924 5 1,736 (*)

Table 1: Scripts with detected DOM-based XSS vul-
nerabilities according to the used sources and sinks.
(*) Total reflects the amount of unique scripts for
the given sink, not the row sum.

analysis revealed 1,736 that contain a DOM-based XSS. The
majority of scripts are vulnerable through the e.innerHTML

sink (1,654 or 95.3%) and the various sources originating
from the document object (99.7%).

Note that some sources might require the ability of an
attacker to place persistent data onto a website. From the
dataset, 101 scripts are vulnerable to DOM-based XSS with
sources not bound by this requirement.

The most prominent, vulnerable to DOM-based XSS, user
script that we discovered is the fourth most popular script on
the userscripts.org script market, with almost 40 million
installations.

5.2 Overly generic @include

As explained in Section 2.2, the @include directive spec-
ifies which webpages a user script is injected in. The @in-

clude directive allows wildcards, and uses regular expression
to test the entire URL of the webpage being visited.

If the @include wildcard is used in a too generic way,
this can lead to a security problem. For instance, reconsider
the introductory example in Listing 1. In this script, the
directive @include http://*.example.com/* is used. An
attacker can construct the URL http://www.mybank.com/#

x.example.com/abc and trick a user of this script to visit it.
Greasemonkey’s regular expression will then match the @in-
clude directive against this crafted URL and falsely assume
that the author of the script wants the script to be executed
on http://www.mybank.com/. The attacker has caused the
script to run on a webpage for which it was not intended,
by abusing the @include wildcard.

@match. The developers of Google Chrome, in their adapta-
tion of the Greasemonkey engine, recognized that the wild-
card * in the @include directive, was not strict enough and
could lead to insecure situations. For this reason, they cre-
ated the @match [4] directive which provides the same func-
tionality as @include, but in a safer way.

Google Chrome’s @match wildcard is context-sensitive and
is applied by splitting a URL into three parts: a scheme,
a host and a path. A * wildcard can occur within each
part, but cannot match anything that violates the borders
between the parts.

To be compatible with user scripts for Google Chrome,
Greasemonkey adopted the @match directive alongside its
@include directive. In cases where both @include and @match

directives are used, the @include directive is handled first.

@match No @match Total
@include securely 670 33,775 34,445
@include insecurely 770 39,955 40,725
No @include 884 10,304 11,188
Total 2,324 84,034 86,358

Table 2: @include and @match directive usage, “inse-
curely” means an overly generic @include

Usage of the @include and @match directives. Table 2 di-
vides the scripts in our dataset with regard to @include and
@match directives. From the 86,358 scripts in our dataset,
75,170 (87.0%) contain a @include directive, of which 40,725
insecurely with a too generic wildcard. Since scripts without
an explicit @include directive automatically obtain a @in-

clude * directive, this means that 51,913 scripts or 60.1% of
the full dataset can be tricked into executing on a different
domain than the one they were designed for.

Only 2,324 specify a @match directive, of which 1,440 also
specify an @include directive. Of those 1,440, 770 have
insecure @include directives, meaning the @match directive’s
security advantage over a @include, is completely negated.

The most popular script with an unsafe @include direc-
tive is, at the same time, the most popular script on user-

scripts.org, a social networking script with more than 250
million downloads. It uses an overly generic wildcard @in-

clude directive of the form @include http://*website.com/*.

5.3 Resulting malicious capabilities

Global XSS. The combination of a DOM-based XSS vul-
nerability, and an overly generic @include directive, results
in a critical vulnerability. Scripts which contain this combi-
nation of vulnerabilities allow attackers to execute malicious
code on any webpage of choice, by having victims visit ap-
propriately constructed URLs.

From the 1,736 vulnerable scripts revealed from our anal-
ysis to be vulnerable to DOM-based XSS vulnerabilities, 944
(54.3%) also use overly generic @include directives and can
thus be used to perform global XSS attacks.

Privileged XSS. The case of a DOM-based XSS where attacker-
controlled data find its way into an eval(x) sink reveals an
extra security issue because it allows malicious code to ex-
ecute inside the Greasemonkey sandbox and gain access to
the Greasemonkey API.

Consider for instance the example in Listing 1. The ex-
ample script uses GM_xmlhttpRequest to get access to cross-
origin resources from http://www.shopping.com/. This API
function will be present in the sandbox where the user script
executes, because @grant GM_xmlhttpRequest is used to re-
quest it. If this example script also contained a DOM-based
XSS vulnerability with an eval(x) sink, then a malicious
website could trigger this vulnerability, executing code in-
side the Greasemonkey sandbox and get access to the pow-
erful GM_xmlhttpRequest function.

From the 79 scripts that contain a DOM-based XSS with
an eval(x) sink, 60 execute in a sandboxed environment
with access to the Greasemonkey API and can thus leak
that API to a malicious website which may abuse it.

Privileged, global XSS. To aggravate the problem further,
it is possible to combine all three vulnerabilities: a script
with an overly generic @include directive, vulnerable to a
DOM-based XSS attack where attacker-controlled data flow
into eval(x), thereby exposing the Greasemonkey API.

A script such as this can be abused by an attacker by
luring victims to a specially crafted URL, causing attacker-
controlled code to be executed, with access to the power-
ful Greasemonkey API. Since the Greasemonkey API func-
tions are not bound by the Same Origin Policy, an attacker
could then abuse them to steal private data from the victim’s
browser, across all sites. From the 60 scripts we identified
as being vulnerable to a DOM-based XSS with an eval(x)

sink and which also expose the Greasemonkey API, 58 use
an overly generic @include directive.

The most prominent example is a script installed by 1.2
million users, which can be forced to run on any website,
due to its overly generic use of wildcards. Moreover, the
script makes insecure use of eval allowing an attacker to
execute arbitrary code in the Greasemonkey sandbox. We
created a proof-of-concept exploit which amounts to a Man-
in-the-Browser attacker, i.e., we can conduct requests to-
wards all websites (together with the user’s cookies), read
the responses, and inject malicious JavaScript on any do-
main.

We are in the process of disclosing the vulnerabilities to
the involved parties.

6. RELATED WORK
To the best of our knowledge, this paper is the first one

that tries to shed light on alternative, community-driven,
JavaScript markets. Closely related, however, is research
done in identifying malicious and vulnerable browser exten-
sions from the official extension markets of Mozilla Fire-
fox [3] and Google Chrome [9], showing that extensions of-
ten request more privileges than needed. VEX [2] analyzes
Firefox extensions, such as Greasemonkey, for privilege esca-
lation vulnerabilities, but does not analyze the user scripts
used by Greasemonkey itself.

While malicious browser extensions are typically written
in JavaScript, malicious JavaScript, today, has a different
connotation, that of code which exploits some vulnerability
in the browser or in one of the browser plugins to eventually
lead to drive-by downloads. Due to the great magnitude of
the problem, there has been a significant body of research
in detecting malicious JavaScript, using honeypots [15], dy-
namic analysis of JavaScript code [5, 11, 13, 17], and hybrid
systems [6, 18] which utilize both static and dynamic tech-
niques to analyze JavaScript code.

The main difference of this type of malicious JavaScript
with the types of malicious Greasemonkey scripts analyzed
in this paper, is that in our case, maliciousness is context-
specific. That is, it may only be discoverable when the user is
on a specific page of a specific website, making dynamic de-
tection of context-specific maliciousness significantly harder
to define, as well as detect.

Typical JavaScript sandboxing techniques [1, 10, 14, 22]
attempt to isolate malicious code in a controlled environ-
ment and prevent references to powerful functionality from
leaking inside the sandbox. In contrast, Greasemonkey cre-
ates a sandbox with its powerful API inside and attempts to
prevent the leakage of references to this API to the outside.

7. CONCLUSION
In this paper, we analyzed the Greasemonkey browser ex-

tension and the userscripts.org script market, searching
for evidence of malware and vulnerabilities, as well as docu-
menting the ways with which community-driven script mar-
kets deal with malicious scripts. Through this process, we
find that the review process of userscripts.org is ineffec-
tive in 78% of the cases.

Moreover, we identify and analyze two types of vulnera-
bilities found in user scripts, which could allow an attacker
to use the restricted and powerful Greasemonkey functions
to, among others, bypass the Same Origin Policy, and force
a user script to run on any website.

We found that DOM-based XSS vulnerabilities are present
in 2% of user scripts and that 60.1% of user scripts can be
forced to run on any webpage. Finally, we show how an at-
tacker can combine many vulnerabilities to launch powerful
privileged, global XSS attacks and discover 58 scripts that
are susceptible to this attack. We verify this attack through
a proof-of-concept exploit for one of these user scripts, in-
stalled by over a million users, allowing an attacker to steal
user data across all sites.

Acknowledgements
This research was performed with the financial support from
the Prevention of and Fight against Crime Programme of
the European Union (B-CCENTRE), the Research Fund KU
Leuven, the FP7 projects STREWS, NESSoS and WebSand,
and the IWT project SPION.

8. REFERENCES
[1] P. Agten, S. Van Acker, Y. Brondsema, P. H. Phung,

L. Desmet, and F. Piessens. JSand: Complete
client-side sandboxing of third-party javascript
without browser modifications. In Proceedings of the
28th Annual Computer Security Applications
Conference, pages 1–10. ACM, 2012.

[2] S. Bandhakavi, S. T. King, P. Madhusudan, and
M. Winslett. Vex: Vetting browser extensions for
security vulnerabilities. In USENIX Security
Symposium, pages 339–354. USENIX Association,
2010.

[3] A. Barth, A. P. Felt, P. Saxena, and A. Boodman.
Protecting browsers from extension vulnerabilities. In
NDSS. The Internet Society, 2010.

[4] Match Patterns - Google Chrome.
https://developer.chrome.com/extensions/match_

patterns.html.

[5] M. Cova, C. Kruegel, and G. Vigna. Detection and
Analysis of Drive-by-Download Attacks and Malicious
JavaScript Code. In Proceedings of the World Wide
Web Conference (WWW), 2010.

[6] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert.
Zozzle: Fast and precise in-browser javascript malware
detection. In Proceedings of the 20th USENIX
Conference on Security, SEC’11, pages 3–3, Berkeley,
CA, USA, 2011. USENIX Association.

[7] DOM XSS Test Cases Wiki Cheatsheet Project.
https://code.google.com/p/domxsswiki/.

[8] Greasemonkey. https://addons.mozilla.org/en-US/
firefox/addon/greasemonkey/.

[9] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy.
Verified security for browser extensions. In Proceedings
of the 2011 IEEE Symposium on Security and
Privacy, SP ’11, pages 115–130, Washington, DC,
USA, 2011. IEEE Computer Society.

[10] L. Ingram and M. Walfish. Treehouse: JavaScript
sandboxes to help web developers help themselves. In
Proceedings of the USENIX annual technical
conference, 2012.

[11] A. Kapravelos, Y. Shoshitaishvili, M. Cova,
C. Kruegel, and G. Vigna. Revolver: An Automated
Approach to the Detection of Evasive Web-based
Malware. In Proceedings of USENIX Security, 2013.

[12] A. Klein. DOM Based Cross Site Scripting or XSS of
the Third Kind. http://www.webappsec.org/
projects/articles/071105.shtml, April 2005.

[13] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert.
Rozzle: De-cloaking internet malware. In Proceedings
of the 2012 IEEE Symposium on Security and
Privacy, SP ’12, pages 443–457, Washington, DC,
USA, 2012. IEEE Computer Society.

[14] J. Magazinius, P. Phung, and D. Sands. Safe wrappers
and sane policies for self protecting javascript. In 15th
Nordic Conference on Secure IT Systems, 2010.

[15] Y. min Wang, D. Beck, X. Jiang, R. Roussev,
C. Verbowski, S. Chen, and S. King. Automated web
patrol with strider honeymonkeys: Finding web sites
that exploit browser vulnerabilities. In Proceedings of
13th Network and Distributed Systems Security
Symposium (NDSS ’06), 2006.

[16] N. Nikiforakis, L. Invernizzi, A. Kapravelos,
S. Van Acker, W. Joosen, C. Kruegel, F. Piessens, and
G. Vigna. You are what you include: Large-scale
evaluation of remote JavaScript inclusions. In
Proceedings of ACM Conference on Computer and
Communications Security (CCS), 2012.

[17] P. Ratanaworabhan, B. Livshits, and B. Zorn. Nozzle:
A defense against heap-spraying code injection
attacks. In Proceedings of the 18th Conference on
USENIX Security Symposium, SSYM’09, pages
169–186, Berkeley, CA, USA, 2009. USENIX
Association.

[18] K. Rieck, T. Krueger, and A. Dewald. Cujo: Efficient
detection and prevention of drive-by-download
attacks. In Proceedings of the 26th Annual Computer
Security Applications Conference, ACSAC ’10, pages
31–39, New York, NY, USA, 2010. ACM.

[19] Mozilla SpiderMonkey. https://developer.mozilla.
org/en-US/docs/Mozilla/Projects/SpiderMonkey.

[20] Mozilla add-ons - featured extensions. https:
//addons.mozilla.org/en-US/firefox/extensions/.

[21] Userscripts.org. http://userscripts.org/.

[22] S. Van Acker, P. De Ryck, L. Desmet, F. Piessens, and
W. Joosen. WebJail: least-privilege integration of
third-party components in web mashups. ACSAC ’11,
pages 307–316, New York, NY, USA, 2011. ACM.

[23] S. Van Acker, N. Nikiforakis, L. Desmet, F. Piessens,
and W. Joosen. Monkey-in-the-browser: Malware and
vulnerabilities in augmented browsing script markets –
extended version. Technical report, Mar. 2014.

https://developer.chrome.com/extensions/match_patterns.html
https://developer.chrome.com/extensions/match_patterns.html
https://code.google.com/p/domxsswiki/
https://addons.mozilla.org/en-US/firefox/addon/greasemonkey/
https://addons.mozilla.org/en-US/firefox/addon/greasemonkey/
http://www.webappsec.org/projects/articles/071105.shtml
http://www.webappsec.org/projects/articles/071105.shtml
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://addons.mozilla.org/en-US/firefox/extensions/
https://addons.mozilla.org/en-US/firefox/extensions/
http://userscripts.org/

	Introduction
	Greasemonkey
	Greasemonkey engine
	Greasemonkey scripts
	Structure of scripts
	Important meta-data

	Attack surface

	Community-drivenscript markets
	Malware assessment
	Userscripts.org issue reporting

	Attacking weak scripts
	DOM-Based XSS
	Overly generic @include
	Resulting malicious capabilities

	Related work
	Conclusion
	References

