
Time Does Not Heal All Wounds:
A Longitudinal Analysis of Security-Mechanism

Support in Mobile Browsers

Meng Luo
Stony Brook University

meluo@cs.stonybrook.edu

Pierre Laperdrix
Stony Brook University

plaperdrix@cs.stonybrook.edu

Nima Honarmand
Stony Brook University

nhonarmand@cs.stonybrook.edu

Nick Nikiforakis
Stony Brook University
nick@cs.stonybrook.edu

Abstract—Recent market share statistics show that mobile
device traffic has overtaken that of traditional desktop computers.
Users spend an increasing amount of time on their smartphones
and tablets, while the web continues to be the platform of choice
for delivering new applications to users. In this environment, it
is necessary for web applications to utilize all the tools at their
disposal to protect mobile users against popular web application
attacks. In this paper, we perform the first study of the support
of popular web-application security mechanisms (such as the
Content-Security Policy, HTTP Strict Transport Security, and
Referrer Policy) across mobile browsers. We design 395 individual
tests covering 8 different security mechanisms, and utilize them to
evaluate the security-mechanism support in the 20 most popular
browser families on Android. Moreover, by collecting and testing
browser versions from the last seven years, we evaluate a total
of 351 unique browser versions against the aforementioned tests,
collecting more than 138K test results.

By analyzing these results, we find that, although mobile
browsers generally support more security mechanisms over time,
not all browsers evolve in the same way. We discover popular
browsers, with millions of downloads, which do not support the
majority of the tested mechanisms, and identify design choices,
followed by the majority of browsers, which leave hundreds
of popular websites open to clickjacking attacks. Moreover,
we discover the presence of multi-year vulnerability windows
between the time when popular websites start utilizing a security
mechanism and when mobile browsers enforce it. Our findings
highlight the need for continuous security testing of mobile web
browsers, as well as server-side frameworks which can adapt to
the level of security that each browser can guarantee.

I. INTRODUCTION

The web continues to be the platform of choice for de-
livering applications to users. The ever-increasing capabilities
of modern web browsers and offloading of computation and
storage to the cloud allow the development of powerful web
applications ranging from banking, office automation, and
word processors to spreadsheets, photo editors, and peer-to-
peer video conferencing.

Web applications have historically been vulnerable to a
wide range of client-side attacks, including Cross-Site Script-

ing (XSS) [31], Cross-Site Request Forgery (CSRF) [10],
SSL stripping [25], and clickjacking [1, 34]. To help defend
against these attacks, browser vendors, from early on, started
adding support for security mechanisms to protect the users of
vulnerable web applications. These mechanisms include simple
access control flags for HTTP cookies (e.g., HttpOnly and
secure flags making cookies inaccessible to JavaScript and
non-HTTPS content [9, 50]) as well as complicated whitelist-
based mechanisms such as the Content Security Policy through
which websites can denote the allowed sources of remote
resources [27]. All of these security mechanisms are re-
quested by web applications, typically through HTTP response
headers, and enforced by web browsers. Previous research
has quantified the adoption of these mechanisms by popular
websites, finding that, in general, the adoption of security
mechanisms and their configuration complexity are inversely
correlated [20, 26, 49].

In this paper, we analyze the support of these mechanisms
in mobile browsers in order to understand whether mobile
browsers are capable of properly enforcing them. We focus
on mobile browsers for the following two reasons: First,
unlike desktop environments, there exist hundreds of fami-
lies of mobile browsers—each advertising a unique set of
features, such as increased performance, voice control, and
built-in anti-tracking capabilities [22]. All of these browsers
are downloaded millions of times and there is currently no
quantification of their security-mechanism support. As such,
two users browsing the same website at the same time may
have substantially different security guarantees depending on
the mobile browsers that they utilize. Second, market research
shows that an increasing number of users rely more and more
on mobile devices for their daily computing needs. A 2017
study of comScore found that users around the world spent
the majority of their online time on mobile devices, with users
from the U.S. spending 71% of their “digital minutes” on a
mobile device [12].

To perform our analysis, we create a set of 395 tests
that precisely quantify the support of eight different security
mechanisms in browsers, and expose the 20 most popular
Android mobile browsers to these tests. Moreover, we perform
a longitudinal analysis of this support since 2011, exposing a
total of 351 unique browser versions to the 395 tests, thereby
performing over 138K tests against mobile browsers.

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23149
www.ndss-symposium.org

Through our experiments, we find that although mobile
browsers, in general, support more security mechanisms with
each passing year, the rate of adoption varies by browser
family. For example, Mozilla Firefox’s support of security
mechanisms is significantly better than the UC Mobile browser
even though UC Mobile is downloaded by more users than
Firefox. Similarly, we find multiple popular browsers that have
not been updated since 2016 and others that, despite their
updates, remain vulnerable to the majority of our tests.

We demonstrate the need for thorough testing of security
mechanisms by showing that Chrome’s decision to not sup-
port the ALLOW-FROM directive of the X-Frame-Options
mechanism [34] in favor of the equivalent CSP directive, cur-
rently leaves hundreds of popular websites belonging to banks,
governments, and telecommunication providers, vulnerable to
clickjacking attacks. Unfortunately, this decision also affects
the majority of the evaluated web browsers which utilize
WebView as their rendering engine.

Next to differences among browser families, we discover
that some security mechanisms are adopted significantly faster
than others. For example, we find that browser vendors added
support for the HTTP Strict Transport Security (HSTS) mech-
anism [20] much faster than other types of mechanisms, such
as CSP and the SameSite cookie flag [33] for protecting
against CSRF attacks. In fact, by using the Internet Archive [7]
to retrieve stored HTTP headers of older versions of websites,
we find that there is often a multi-year window of vulnerability
between the date when a given mechanism was first requested
by a popular website, and the date when at least half of the
evaluated mobile browsers supported it.

Finally, we discover that, due to many browsers’ reliance
on WebView, the support of security mechanisms is inherently
tied to the Android version on which a browser is executing.
By evaluating the most recent versions of mobile browsers on
three popular Android versions, we find that users of the same
version of the same browser are experiencing vastly different
levels of security, something that is both counter-intuitive as
well as difficult to account for by web developers.

Overall, our main contributions are the following:

• We systematically collect information about security
mechanisms currently recommended for mobile web
browsers, and develop 395 tests to evaluate whether
a browser correctly implements all security-related
directives of each mechanism.

• We conduct a total of 138,645 tests against 351
individual browser versions belonging to 20 different
families released in the last seven years, and quantify
the differences in security-mechanism support and the
implications of the discovered differences for website
developers.

• We quantify the window of time between the request
of a security mechanism by a popular website and the
time when mobile browsers support that mechanism,
finding multi-year windows of vulnerability.

• We discover that, for WebView-based browsers, the
same browser version can exhibit different security
traits depending on the Android version on which it
executes.

TABLE I: Overview of the tested security mechanisms.

Category Content # Tests
Same-Origin
Policy

DOM access, cookie scope, XML-
HttpRequest and worker

33

Cookie Secure, HttpOnly and SameSite flag 11
X-Frame-
Options header

Deny, SameOrigin and Allow-From
values

30

X-Content-
Type-Options
header

Script sniffing opt-out 1

Iframe sandbox
attribute

JavaScript execution, form submis-
sion and top-level navigation

3

Content
Security Policy

Fetch directives (e.g., script-src)
and other directives (e.g. form-
action, frame-ancestors and upgrade-
insecure-requests)

253

Referrer policy no-referrer-when-downgrade
(default) and other values (e.g.,
no-referrer, origin, same-origin and
strict-origin)

62

Strict-
Transport-
Security header

Basic and includeSubDomains value 2

Total 395

• To tackle this complex security scene, we argue that
there is a need for developing a server-side framework
that can adapt to a user’s mobile environment and
employ proper security mechanisms (such as HTTP
response headers, HTML tags or JavaScript coding
techniques) according to the particular browser and OS
version of the mobile device, hiding this complexity
from web developers.

II. BACKGROUND AND SECURITY-MECHANISM TEST
SUITE

Table I lists the security mechanisms evaluated in this
paper. We compiled this list by reviewing prior work which
quantified the use of these mechanisms in popular and regional
websites [49, 20, 26, 43, 48], as well guides on securing
modern web applications [2, 18, 32]. Six out of the eight
presented mechanisms are typically activated via HTTP re-
sponse headers, although most of them can also be utilized
through <meta> HTML tags. The Same-Origin Policy is, by
default, active in all web browsers whereas iframe sandboxing
is activated via the setting of the sandbox attribute in an
iframe HTML tag. Note that some of the security mecha-
nisms take boolean values (e.g., the Secure and HttpOnly
cookie attributes) while others, such as the Content Security
Policy, allow web developers to author complicated policies.

We made an effort to be as comprehensive as possible re-
garding the evaluated security mechanisms. We only excluded
mechanisms that are currently being deprecated (such as
HPKP [21]) and very recent mechanisms (such as the Feature
Policy [11]) which were proposed in 2018 and therefore cannot
yet be used for a longitudinal study.

A primary concept common to many security mechanisms
is that of a web origin. With the exception of browser cookies,
a web origin is defined as the triplet of <protocol, host,
port> [8]. As we discuss below, many security mechanisms

2

(a) Firefox v59.0 on Android 7.1 (secure)

(b) UC Mini v11.0.6 on Android 7.1 (vulnerable)

Fig. 1: The UC Mini browser is ignoring the HttpOnly
directive for sensitive cookies.

make decisions based on the origin of two parties that are
trying to communicate.

A. Same-Origin Policy [#Tests: 33]

The Same-Origin Policy (SOP) is a core security mech-
anism in modern browsers that isolates interactions between
components belonging to different web origins. Given the
importance of the SOP, a browser that shows vulnerabilities in
its SOP implementation is likely to be showing vulnerabilities
in all other security mechanisms.

Similarly to the work by Hothersall-Thomas et al. [19]
and Schwenk et al. [35], we develop a number of SOP tests
where content from an origin attempts to communicate with
other origins in a variety of ways. Examples include a parent
page trying to access resources of a cross-origin iframe, or
a child iframe accessing a cross-origin parent. Our SOP tests
cover interactions under multiple scopes, such as, DOM access,
cookies, XMLHttpRequest and web workers.

Moreover, our tests include various types of domain
relaxations where, through the appropriate setting of the
document.domain attribute, two different origins attempt
to relax to a common origin and then communicate with each
other [28]. Note that, because we are interested in the security
implications of not properly supporting SOP, all our test cases
(both for SOP as well as for all other mechanisms) involve
scenarios that should be blocked if the security mechanism is
properly supported. Overall, our framework tests a browser’s
SOP implementation against 33 different tests.

B. Protecting HTTP cookies [#Tests: 11]

Since web applications typically store session identifiers
in browser cookies, attackers often seek to steal user cookies
to perform session hijacking attacks. Moreover, Cross-Site
Request Forgery (CSRF) attacks abuse the ambient authority
of an authenticated user’s cookies to conduct cross-origin
authenticated requests. Given the sensitive nature of cookies,
browsers support attributes which make it harder for attackers
to steal cookies or weaponize a user’s authenticated cookies.

(a) Firefox v59.0 on Android 7.1
(secure)

(b) Chrome v65.0.3325 on An-
droid 7.1 (vulnerable)

Fig. 2: Chrome does not recognize the X-Frame-Options:
ALLOW-FROM http://webvisor.com sent by a Russian
bank (alfabank.ru) and allows the framing of the website
by any origin.

Specifically, by marking a cookie as Secure, a browser
is instructed to never send that cookie over unencrypted
communications, thereby stopping man-in-the-middle attackers
from capturing a user’s session identifiers. Similarly, cookies
marked as HttpOnly are never made available to JavaScript
code running in a page’s origin. As such, even if attackers
manage to conduct an XSS attack, sensitive cookies are
not available through the document.cookie attribute and
therefore cannot be exfiltrated. Figure 1 shows screenshots
of the Firefox and UC Mini browsers on a page that marks
sensitive cookies as HttpOnly. Through the experiments
described in the rest of this paper, we discovered that UC
Mini ignores the HttpOnly attribute, and makes the cookie
available to JavaScript.

To defend against CSRF, web browsers recently started
supporting the SameSite flag that controls the sending
of browser cookies in cross-origin requests. When a web
application uses the attribute samesite=strict, browsers
never send cookies in any cross-domain requests. Alternatively,
web applications can use the samesite=lax attribute where
cookies are sent in cross-origin requests, as long as these
requests utilize the GET method and cause a top-level nav-
igation. Our framework utilizes eleven tests to evaluate the
support of all three attributes, in different situations.

C. X-Frame-Options Header [#Tests: 30]

In clickjacking attacks, attackers set up malicious pages
where benign websites are loaded into transparent iframes and
super-imposed over the attackers’ websites. By carefully align-
ing controls between the two websites and taking advantage
of the ambient authority of browser cookies, attackers can use
clickjacking attacks to convince users to perform malicious
or unwanted actions, such as, deleting all their emails or
following someone on a social network. To protect against such
attacks, websites can utilize the X-Frame-Options header

3

to instruct browsers as to whether they want to be framed and,
if so, which websites are allowed to frame them. Specifically,
the X-Frame-Options header can be set to DENY (framing
is not allowed), SAMEORIGIN (framing is allowed as long as
the parent page belongs to the same origin) and ALLOW-FROM
URL1, URL2,..., URLN (framing is only allowed if a
website is in the specified whitelist). The support of these
values is tested by trying to frame a website in another
website that is not permitted in the X-Frame-Options
header. Figure 2 shows another real example uncovered via
our experiments where the Chrome browser does not rec-
ognize the ALLOW-FROM directive and discards the entire
X-Frame-Options mechanism, thereby making websites
vulnerable to clickjacking attacks.

D. X-Content-Type-Options Header [#Tests: 1]

Some browsers have MIME-sniffing capabilities that enable
them to attempt to determine the content type of each down-
loaded resource. This feature can lead to security problems
for servers hosting untrusted content (e.g., a user uploading
a malicious HTML page when the server expects the upload
of a picture and later abusing that page to conduct session-
hijacking attacks). To prevent browsers from MIME-sniffing,
thus reducing exposure to such attacks, a web server can send
the X-Content-Type-Options response header with a
value set to nosniff. To measure whether nosniff is
honored by browsers, we test whether a script, when non-script
content is expected, has its type determined and executed.

E. Iframe Sandbox Attribute [#Tests: 3]

The sandbox attribute allows developers to make use of
the least-privilege principle for content loaded inside iframes.
Using this attribute, a page can take some capabilities away
from the framed content, such as the ability to execute scripts
and navigate the top-level webpage. Developers can then
selectively enable the capabilities that are absolutely necessary
for the framed content. In our tests we measure whether the
script execution, form submission, and top-level navigation are
blocked, when an iframe is sandboxed.

F. Content Security Policy [#Tests: 253]

The Content Security Policy (CSP) is a mechanism through
which websites can instruct browsers to limit the loading
of remote resources to those from trusted domains. Al-
though the original goal of CSP was to make XSS at-
tacks harder—by disabling inline scripting and limiting the
sources trusted for remote JavaScript code—CSP today sup-
ports more than 20 directives controlling, among other things,
the loading of scripts (script-src), images (img-src),
stylesheets (style-src), forms (form-src), and fonts
(font-src). Moreover, CSP can be used to subsume older
standalone headers (e.g., by replacing the anti-clickjacking
X-Frame-Options header with the frame-ancestors
CSP directive) and to instruct a browser to block all mixed
requests (i.e., HTTP requests originating from an HTTPS
page) or automatically upgrade them to HTTPS (upgrade-
insecure-requests).

Next to the large number of resource-specific directives,
an additional complication is that CSP defines a fallback

default-src

script-src child-src img-src child-src

frame-src

script-src

child-src

worker-src

font-src style-src connect-src

Fig. 3: The fallback tree of CSP fetch directives.

hierarchy for directives [16, 27], as shown in Figure 3. For
instance, even though the default-src directive is used
when a resource-specific directive is missing, certain types
of directives, such as frame-src (controlling the loading
of frames) and worker-src (controlling the sources of
JavaScript workers) have other intermediate fallback directives
which are supposed to be preferred over default-src. A
browser that does not properly follow this fallback ordering
may allow the loading of specific types of resources from
domains other than the ones that the developer expected.

Given the large number of directives and fallback
combinations, we take a pragmatic approach to limit the
number of tests necessary for our evaluation. We start by
eliminating directives controlling the loading of resources
of a type that are not associated with remote-resource
attacks [6, 48, 31, 17, 13], such as the manifest-src
and media-src directives. For the remaining directives,
we follow a data-driven strategy where we crawl the main
pages of the Alexa top 1-million websites and search for
the directives that are most commonly used in real websites.
Our final list of directives are the following: default-src,
script-src, child-src, img-src, frame-src,
worker-src, font-src, style-src, connect-src,
frame-ancestors, form-action, upgrade-
insecure-requests, block-all-mixed-content
and require-sri-for. Even after this pruning strategy, as
Table I shows, our test suite contains an order of magnitude
more tests for CSP than for other security mechanisms.

G. Referrer Policy [#Tests: 62]

HTTP Referer header indicates from which specific web
page the current outgoing request originated. For example, if
a user clicks on a link B while on webpage A, the full URL
of webpage A is then sent to webpage B via the Referer
header. Even though browsers always omitted the header when
transitioning from an HTTPS page to an HTTP one, previous
studies have found that the Referer header often contains
personally identifiable information which could be used to de-
anonymize users [38].

To mitigate unwanted privacy leaks, modern browsers
allow websites, via the Referrer-Policy header, to
control when and how a request will contain a Referer
header. Among others, websites can set this header to
no-referrer (completely omit the Referer header),
origin-when-cross-origin (omit the file path from
the Referer header when sending it to a cross-origin web-
site), and same-origin (send the Referer header if requests

4

(a) No SSL-stripping (b) With SSL-stripping (secure)

Firefox v59.0 on Android 5.1.

(c) No SSL-stripping (d) With SSL-stripping (vulnerable)

Dolphin v12.0.4 on Android 5.1.

Fig. 4: The Dolphin browser does not recognize the HSTS
header and thus allows MITM attackers to perform successful
SSL stripping attacks.

are to the same origin). Our framework utilizes 62 tests to
quantify the extent to which mobile browsers support the
various values of Referrer-Policy mechanism.

H. HTTP Strict Transport Security [#Tests: 2]

The HTTP Strict-Transport-Security (HSTS) mechanism
enables websites to instruct browsers to only access them
over HTTPS for a specific period of time. The HSTS header
can also include the includeSubDomains flag instructing
the browser to utilize HTTPS for communications with all
subdomains of a given website. The HSTS header was intro-
duced to protect against SSL-stripping attacks where a man-
in-the-middle could strip away a website’s HTTP-to-HTTPS
redirection messages and exfiltrate sensitive user informa-
tion [25]. By setting the HSTS header with and without the
includeSubDomains option and attempting to load the
website and one of its subdomains over HTTP, we test how
well the HSTS mechanism is supported.

Figure 4 shows an example of accessing paypal.com
(which utilizes the HSTS mechanism), first in the absence
of an attacker and then in the presence of a MITM attacker
conducting an SSL stripping attack. While Firefox correctly
handles both scenarios, the Dolphin browser does not recog-
nize the HSTS header and therefore attempts to communicate
with paypal.com over HTTP, giving an opportunity to the
MITM attacker to conduct a successful SSL stripping attack.

To solve the Trust On First Use (TOFU) problem of HSTS,
modern browsers preload HSTS headers for websites that
support it. During preliminary experimentation, we discovered
that, given our goal of performing a browser-agnostic, longi-
tudinal analysis of mobile browsers, we could not evaluate
preloaded certificates for older browsers since it was not

clear whether an older version of the browser would include
the most recent list of HSTS preloaded websites. As such,
our current framework tests the support of HSTS and the
includeSubDomains flag, but not whether the headers are
correctly preloaded.

I. Test Generation and Verification

Given that writing test cases for hundreds of security mech-
anisms is time consuming and error prone, we implemented
a templating system to help with test generation. For each
security mechanism, we created a set of template files that
enable us to easily tweak different parameters. For example,
for the X-Frame-Options category, we can modify the content
of the header (Deny, SameOrigin or Allow-From) but we can
also change the URL of the frame (both the schema and the
domains) and its type (iframe, object, embed). Using these
parameters, we can comprehensively assess the support for a
security mechanism including its mainstream usage as well
as potential corner cases. For X-Frame-Options, combining
all these parameters lead to 30 tests for this category. Other
categories, such as CSP, present more complex combinations
that require finer-grained templates.

After the generation process, we used a desktop browser
and a custom browser extension to verify that the tests worked
properly. By using the extension to selectively enable and
disable specific security mechanisms in the browser, we were
able to verify that the tests indeed failed (i.e., marked as “vul-
nerable”) when the security feature was disabled, and passed
otherwise. Finally, before launching large-scale measurements,
we sampled 60 different mobile browsers—both old and new
versions—directly on mobile devices to gauge whether our
test pages were behaving as expected on these devices. We
will release all 395 generated tests that evaluate the support of
the security mechanisms listed in Table I, in the near future.

III. AUTOMATED VULNERABILITY TESTING

In this section, we first describe our methodology for the
selection of the evaluated mobile browsers, and then describe
the framework utilized to evaluate these browsers against the
395 tests presented in Section II.

A. Mobile Browser Dataset

Unlike desktop browsers, mobile app markets house hun-
dreds of different mobile browsers with each browser advertis-
ing a set of unique features, such as voice control, data savings,
and built-in anti-tracking capabilities.

Browser family selection: To identify mobile web browsers
we first downloaded all app descriptions that contain the word
“browser” from the Google Play Store, and then manually
filtered out apps that are not web browsers. Because of the
large number of tests and the decreasing population of users
utilizing less popular browsers, we limit our study to the
20 most popular browser families, based on the number of
downloads reported by the Google Play Store. As Table II
shows, these browsers range from billions (Google Chrome)
to millions (Boat Browser) of installations.

5

TABLE II: The twenty most-popular mobile browsers studied in this paper.

Rank Package name # Installs # Versions Oldest Latest
1 com.android.chrome 1,000,000,000+ 22 29.0.1547.72 (2013) 65.0.3325.109 (2018)
2 com.UCMobile.intl 500,000,000+ 27 8.4.0 (2012) 12.2.0.1089 (2018)
3 org.mozilla.firefox 100,000,000+ 29 9.0 (2011) 59.0 (2018)
4 com.opera.browser 100,000,000+ 25 12.1 (2012) 45.1.2246.125351 (2018)
5 com.opera.mini.native 100,000,000+ 14 8.0.1739.87973 (2015) 32.0.2254.124407 (2018)
6 com.uc.browser.en 100,000,000+ 21 8.1.0 (2012) 11.0.6 (2017)
7 mobi.mgeek.TunnyBrowser 50,000,000+ 22 8.8.1 (2012) 12.0.4 (2017)
8 com.ksmobile.cb 50,000,000+ 19 3.0.6 (2014) 5.22.11.0008 (2018)
9 com.yandex.browser 50,000,000+ 24 1.0.1364.172 (2013) 18.1.1.642 (2018)

10 com.explore.web.browser 10,000,000+ 11 2.1.0 (2014) 2.6.3 (2018)
11 com.mx.browser 10,000,000+ 29 1.1.4 (2011) 5.2.0.3213 (2018)
12 com.htc.sense.browser 10,000,000+ 4 7.0.2511222747 (2015) 7.30.2620152639 (2016)
13 com.asus.browser 10,000,000+ 9 1.5.6.150317 (2015) 2.1.2.83 170817 (2018)
14 com.dolphin.browser.express.web 10,000,000+ 12 11.2.1 (2014) 11.5.08 (2016)
15 com.baidu.browser.inter 10,000,000+ 14 1.0.0.0 (2012) 6.4.0.4 (2016)
16 com.appsverse.photon 10,000,000+ 16 1.5 (2012) 5.3 (2016)
17 com.apusapps.browser 10,000,000+ 16 1.0.0 (2015) 2.0.5 (2018)
18 com.jiubang.browser 10,000,000+ 12 1.06 (2013) 2.17 (2016)
19 org.adblockplus.browser 10,000,000+ 7 1.0.0 (2015) 1.3.3 (2017)
20 com.boatbrowser.free 5,000,000+ 18 4.0 (2012) 8.7.8 (2016)

Browser version collection: For a longitudinal analysis of
the support of security mechanisms, we needed to obtain as
many versions as possible for each of the selected mobile
browsers. Since the Google Play store only provides the most
recent version of each app, we relied on third-party app
markets and APK-archiving websites to obtain older versions.
To this end, we implemented a range of website-specific
crawlers and reverse-engineered the ways utilized by third-
party markets for fetching older APKs.

Through this process, we were able to obtain 1,369 unique
APKs belonging to the 20 selected browser families. Since
we needed to conduct 395 tests per APK (as described in
Section II), analyzing all of these APKs would be prohibitively
time consuming. Therefore, we chose to analyze four APKs per
year for each browser family, filtering our initial set down to
351 unique APKs covering a seven-year period (2011 to 2018).
Table II shows the distribution of these 351 unique APKs
across the selected browser families. For the browsers with
no versions in 2018, we were able to manually verify that this
is because the browser vendors have not released any recent
updates to their browsers. Note that even with this filtering,
we still need to conduct more than 138K tests (395 tests ×
351 APKs) to quantify the evolution of security-mechanism
support in mobile web browsers.

Finally, we should point out that testing older versions
of mobile browsers does not just provide us with interesting
statistics on the evolution of security-mechanism support, but
also gives us a window into the current vulnerability of all
the users utilizing older devices which are no longer receiving
updates from their app stores [40].

Release Time Tagging: To be able to conduct our longitudi-
nal study through the years, we need to be able to not just order
the collected APKs by version but to also date them. For this,
we rely on the methodology of Luo et al. [22] where the date
of each APK is extracted based on the modification time of
specific files in the APK package (such as the .RSA and .DSA

files). To account for repackaging that may have occurred by
the third-party APK archiving services, we use this method to
only extract the release year and discard the exact month and
day. Finally, where possible, we cross-validate our results with
release dates found online.

B. Testing Framework

Given the large number of individual tests needed for this
study (138,645 tests), manual testing is highly impractical and
error prone. To automate the testing process, we rely on the
Hindsight framework [22]. Hindsight is a dynamic testing
framework that can automatically install a mobile browser
APK on a mobile device and navigate the browser to a series
of pages. The framework takes care of assigning APKs to
the appropriate Android version when multiple smartphones
are available for testing, bypassing potential splash screens of
newly installed browsers, and closing existing open tabs. In the
rest of this section, we focus on how we utilized Hindsight to
test the security mechanisms described in Section II and refer
the reader to the original paper for a detailed description of
the Hindsight framework [22].

For each test, three pieces of information are collected
to evaluate its success/failure: a screenshot of the rendered
page, the web server logs indicating which resources were
requested by the browser, and, where necessary, results of
running JavaScript code on the browser that are sent to a
monitoring web server using AJAX messages. For example, in
SOP-related DOM tests, to detect whether a parent frame was
able to access a child frame using the document.location
attribute, the test page attempts the access and sends an AJAX
message to the web server to record the success or failure of
the test.

These three pieces of information are then used by a test-
specific evaluation logic to determine whether a given security
mechanism is properly implemented by the browser under a
given test. This step uses the web server logs and collected

6

●
●

● ● ●

●

●

●

20

40

60

2013 2014 2015 2016 2017 20182012 2013 2014 2015 2016 2017 20182011 2012 2013 2014 2015 2016 2017 20182013 2014 2015 20162015 2016 20172012 2013 2014 2015 2016

Browser release time (year)

A
vg

 #
 o

f v
ul

ne
ra

bi
lit

ie
s

Browser:
●com.android.chrome com.UCMobile.intl org.mozilla.firefox

com.jiubang.browser org.adblockplus.browser com.boatbrowser.free

Fig. 5: Vulnerability trend for most- vs. least-popular families
(lower is better).

AJAX messages to detect cases where the browser requests
resources that should have been blocked (according to the
the specification of the particular security mechanism being
tested). This log-based analysis works well for most evaluated
browsers.

A class of browsers which require different handling
are “proxy-based” browsers such as UC Browser Mini
(com.uc.browser.en). These are lightweight browsers that ren-
der the page in a remote server and send a compressed
version of the rendered page back to the client browser for
display. We experimentally discovered that for many proxy-
based browsers, the rendering server blindly requests all the
resources that are embedded in a web page, before evaluating
whether security-based restrictions should be applied to these
resources. For example, the remote servers backing a proxy-
based browser may request all third-party resources before
consulting with the website’s Content Security Policy which,
in regular browsers, would have rejected requests for resources
that were not whitelisted.

Therefore, when testing proxy-based browsers, the web
server logs might indicate that certain resources, that were
eventually blocked, were nevertheless requested. Log-based
analysis would incorrectly mark the browser as vulnerable in
such cases. To account for this issue, our setup utilizes OCR
analysis of browser screenshots to detect the rendering of the
resources of interest, in addition to the collected webserver
logs. We designed the test pages to contain OCR-friendly vi-
sual clues (such as certain text, colors, etc.) for each successful
test.

A second benefit of the OCR analysis is that it can be used
to validate the results of the log-based analysis for non-proxy-
based browsers. This is particularly helpful in establishing the
correctness of the obtained results of our framework since it is
unreasonable to manually verify the results of 138K tests. In
our experiments, we use the OCR and log-based analysis re-
sults to cross-check each other. Only in cases of disagreement
between the two is manual validation necessary. Fortunately,
such cases became increasingly infrequent after several rounds
of debugging, significantly reducing the overhead for verifying
the correctness of the reported results.

IV. LONGITUDINAL ANALYSIS OF RESULTS

In this section, we report the results of evaluating 351
mobile browser versions belonging to the top 20 Android

●

●
●

●
●

●0

25

50

75

100

201320132013201320132013201320132013 201420142014201420142014201420142014 201520152015201520152015201520152015 201620162016201620162016201620162016 201720172017201720172017201720172017 201820182018201820182018201820182018

Browser release time (year)

%
 v

ul
ne

ra
bl

e
br

ow
se

r
fa

m
ili

es

Category:
●

SOP CSP−level 1 CSP−level 2&3

Cookie Referrer−Policy X−Frame−Options

Strict−Transport−Security X−Content−Type−Options Sandbox

Fig. 6: Vulnerability trends in distinct security mechanisms
(lower is better).

browser families from 2011 to 2018. Each browser APK is
automatically exposed to a total of 395 tests and our experi-
mental setup, as described in Section III-B, is responsible for
gauging the success or failure of each test. In this section, we
use the terms “secure” and “vulnerable” to denote, respectively,
existence or lack of support for any given test.

A. Security Mechanism Adoption Trends

To understand how the support for security mechanisms
evolves over time, we aim to answer the following two ques-
tions: 1) Do browser families add more support for security
mechanisms as time goes by? and 2) Are there differences in
the rate of support for different types of security mechanisms?

Vulnerability trends for distinct browser families: To obtain
an overall view of the vulnerability trends, we count the
average number of vulnerable tests (out of a total 395 tests)
for versions of a browser family that are released within the
same year, and then compare how the number of vulnerabilities
changes over the years.

Figure 5 presents the general vulnerability trends of the
three most popular browser families versus the three least
popular ones (as listed in Table II). Given the large number of
CSP tests that could skew the vulnerability trends towards one
specific mechanism, we have excluded CSP support from this
figure. At a high-level, one can observe that most browsers
become better (i.e., support more security mechanisms)
over time. Two notable exceptions, however, are the Next
(com.jiubang.browser) and the Boat (com.boatbrowser.free)
browsers. These two browsers are among the top 20 popular
browsers in Android market and together amass more than 15
million downloads. Both browsers have not been updated since
2016 and are vulnerable to more than 60 tests (excluding their
support of CSP).

In terms of popular browsers, even though UC Mobile
has been supporting more and more security mechanisms over
the years, its latest evaluated version has five times as many
vulnerabilities as Firefox, yet it was downloaded by five times
as many users. Finally, both Chrome and Firefox have a non-
zero number of issues in their latest versions at the time of
testing (as listed in Table II). These are primarily due to lack of
support for the ALLOW-FROM value of the X-Frame-Options
header in Chrome, and the SameSite cookie in Firefox. More
details on the support of the ALLOW-FROM value are provided
later in Section VI-A.

7

TABLE III: Disparity between the earliest time when websites ask for a security mechanism, and when mobile browsers have
adopted them. Year of support for desktop browsers is provided for reference.

Security Mechanism Earliest request Chrome for
Desktop

Firefox for
Desktop

First Mobile
Browser
Support

50% Mobile
Browsers
Support (∆)

75% Mobile
Browsers
Support (∆)

CSP 2011 (lastpass.com) 2011 2011 2011 2014 (+3) 2015 (+4)
Cookie <2011 (slate.com) 2011 2009 2011 2013 (+2) 2014 (+3)
Referrer-Policy 2016 (tut.by) 2012 2015 2015 2018 (+3) Not yet
X-Frame-Options <2011 (goo.gl) 2010 2010 2011 2013 (+2) 2014 (+3)
HSTS <2011 (paypal.com) 2010 2011 2011 2015 (+4) 2016 (+5)
X-Content-Type-Options <2011(fivethirtyeight.com) 2008 2011 2011 2013 (+2) 2015 (+4)

Vulnerability trends for different security mechanisms: To
understand the vulnerability trend of various security mecha-
nisms, we consider browsers that are released within the same
year and calculate the fraction of vulnerable browser families.

Figure 6 shows the vulnerability rates (the percentage
of vulnerable browser families) for each of the evaluated
security mechanisms. Here, a browser family is marked as
vulnerable with respect to a security mechanism if at least
one version released within a given year is vulnerable to
tests for that security mechanism. Note that tests for Content
Security Policy (CSP) are divided into two subsets according to
their levels. This means that CSP directives that are proposed
later in CSP levels 2 and 3, such as form-action and
frame-ancestors, are analyzed separately from the ones
included in CSP level 1. In addition, since not many mobile
browsers were being developed in the years 2011 and 2012 and
that would cause biased results, we limit the analysis to the
years 2013–2018 where we collected browsers from at least
10 different browser families.

One can again observe several trends. The Same-Origin
Policy (SOP), iframe sandboxing, and the X-Content-Type-
Options header appear to have always been well supported
in mobile browsers, although we find that, in most years, they
all have a few failing tests. Contrastingly, other mechanisms—
such as the Referrer-Policy, secure cookie attributes, and X-
Frame-Options—are still not well supported in the majority of
mobile browsers. The only mechanism that started with little
support but is currently as widely supported as SOP and iframe
sandboxing is the HTTP Strict Transport Security (HSTS)
mechanism. We opine that this is because of the general push
from browser vendors towards the HTTPS-by-default web and
the gravity of SSL-stripping-like attacks which HSTS defends
against.

So far, CSP level 1 is properly supported by approxi-
mately half of the evaluated browser families, but none of
the evaluated browser families properly enforces all tested
directives of CSP levels 2 and 3. This demonstrates that it
is not only difficult for web developers to author correct CSP
policies [26, 37, 48, 49], but it is also challenging for browser
vendors to account for all directives as described in the CSP
specification.

B. Windows of Vulnerability

Except for the SOP and the iframe sandboxing, all of the
security mechanisms we test in this paper need to be activated
by website administrators by sending the appropriate HTTP

1
1

4

5

5

3

2

7

3

3

5

2
1

4

2

2

7

3

3

5

1
1
1

4

5

3
1

1

6

4

3

5

0

5

10

15

20

CSP Cookie
Referrer−Policy

X−Frame−Options

Strict−Transport−Security

X−Content−Type−Options

Security mechanism category

br
ow

se
r

fa
m

ili
es

Year: 2018 2017 2016 2015 2014 2013 2012 2011

Fig. 7: Adoption rate of security mechanisms over the years.

response headers. In this section, we quantify the window of
vulnerability between the time when website administrators
first expected a given security mechanism to be present—
thereby relying on it to increase the security of their pages—
and the time when that mechanism was supported in desktop
and mobile browsers.

To quantify the window of vulnerability, we crawled his-
torical snapshots of the Alexa top 5K websites from the
Internet Archive [7]. We collected the timestamps for all
available snapshots of these websites and, when available,
chose one snapshot per month to download. From the resulting
550K archived snapshots, we extracted the captured response
headers—available and prefixed by the X-Archive-Orig-
string, as described by Stock et al. [41]—and located the
earliest time when any website first utilized a given security
mechanism.

In Table III, we compare the earliest time when any Alexa
top 5K website requested a certain security mechanism, and
the earliest time when mobile and desktop browsers adopted
that specific mechanism. We exclude from this analysis the
SOP and iframe sandboxing since they are either assumed or
are activated through HTML tags. We choose 2011 as a cutoff
year since that is the year when the oldest versions of our
evaluated mobile browsers were released.

We found that mobile browsers are significantly slower in
adopting security mechanisms compared to desktop browsers
which often start supporting mechanisms even before they
are standardized. For example, we find that the first mo-
bile browser to support the anti-clickjacking X-Frame-Options
mechanism did so in 2011 whereas both desktop Firefox
and desktop Chrome supported the mechanism in 2010. At

8

0

5

10

15

20

25

SOP CSP
Cookie

Referrer−Policy

X−Frame−Options

Strict−Transport−Security

X−Content−Type−Options

Iframe sandbox

Security mechanism category

%
 b

ro
w

se
r

fa
m

ili
es

Regression type:
Permanent regression
Temporary regression

Fig. 8: Security regressions for distinct security mechanisms.

the same time, mobile browsers needed an extra three years
(2014) before 75% of the evaluated browser families supported
this mechanism. The results of Table III demonstrate that,
for all evaluated security mechanisms, there exist multi-year
vulnerability windows between the time websites make use
of a given security mechanism and the time mobile browsers
actually support it. Finally, we also discovered that Referrer-
Policy1 is the only security mechanism that has not yet been
adopted by 75% of the studied mobile browser families at the
time of this writing.

Figure 7 shows the adoption rates of distinct security
mechanisms in mobile browsers. For this graph, we denote
a mechanism as “supported” if any of its tests succeed in
a browser. The number in each bar segment represents the
number of browser families that started to support a security
mechanism in a given year. Among others, we observe that,
except for the security-related attributes of cookies and the
X-Frame-Options header, the remaining security mechanisms
are not completely adopted by all of the 20 browser families
we tested. One of the more recent security mechanisms, the
Referrer-Policy1, is currently only adopted by less than half of
the browser families with more browsers adopting it in 2017
than they did in 2018.

C. Regressions in Security-Mechanism Support

Web browsers usually increase their support for differ-
ent security mechanisms over time. For example, Chrome
supported a subset of values of Referrer-Policy before fully
supporting it. However, there are cases where mobile browsers
exhibit regressions. In a regression, a later version of a given
browser family supports fewer security mechanisms than a
previous version of the same family.

By analyzing the number of vulnerable tests in consecutive
versions of the same browser family, we identify two types
of security regressions: temporary regressions and permanent
regressions. In a temporary regression, a previously supported
mechanism becomes unsupported only to be supported again
in a later version. Contrastingly, in a permanent regression,
a previously supported mechanism becomes unsupported and
stays unsupported for the remainder of the evaluated versions.

According to our study, 55% of the tested browser families
show signs of regressions in their support of security mech-

1no-referrer-when-downgrade value is excluded given its implicit support
by all browsers

TABLE IV: Security-mechanism regression in top-5 families.

Mechanism Chrome UC Firefox Opera Opera mini
SOP 7 3 7 7 7
CSP 7 3 3 7 7
Cookie 7 7 7 7 7
Referrer-Policy 7 7 7 7 7
X-Frame-Options 7 7 7 7 3
HSTS 7 7 7 3 7
X-Content-Type-
Options

7 3 7 7 7

Sandbox 7 7 7 7 7

anisms. Figure 8 shows what percentage of browser families
exhibit regressions with regard to different security mecha-
nisms. Unfortunately, temporary and permanent regressions
within a browser family appear in all security mechanisms
except iframe sandboxing. We observe that most regressions
occur when adopting CSP. This makes intuitive sense given
the complexity of the CSP mechanism. Fortunately, most
CSP regressions are temporary meaning that browser vendors
eventually detect the regression and correct it.

Table IV shows whether a particular top-5 popular browser
family presents security regressions in terms of distinct secu-
rity mechanisms. A checked cell means that a browser ex-
hibited a regression while supporting the security mechanism.
Our findings suggest that Chrome has the most consistent evo-
lution since it does not show any security regressions as new
security mechanisms were added or existing mechanisms were
upgraded. UC browser shows frequent security regressions
on SOP, CSP and X-Content-Type-Options. The remaining
browsers only occasionally show security regressions. For
example, the Opera browser stopped supporting HSTS in
version 15 and resumed its support in version 26. Given that
these versions were released approximately one year apart,
this means that users of the Opera browser were vulnerable
to MITM attackers for that period, even for websites that
correctly utilized the HSTS header.

Fortunately, all security regressions in this table, with the
exception of Opera Mini’s regression in X-Frame-Options,
were temporary and have been fixed in their latest browser
versions.

V. ANALYSIS OF CURRENT MOBILE BROWSERS

In the previous section, we investigated the security-
mechanism support in mobile browsers from 2011 to 2018.
This enabled us to quantify differences in level of support
across browser families, the mechanisms that are the most/least
supported, and the delay between the first usage of a security
mechanism in a popular website and the time when this
mechanism is actually supported by most mobile browsers.

But this longitudinal analysis is only half of the story. Most
users are likely to be utilizing a recent version of a popular
browser, either because they consciously update their apps, or
because their smartphone is configured to automatically update
apps whenever they connect to a wireless network. Therefore,
in this section, we focus on the support of security mechanisms
in the most recent versions of popular mobile browsers. We
pay particular attention to the effects of the underlying Android

9

NA NA

NA

5.1
6.0

7.1

com.android.chrome

com.UCMobile.intl

org.mozilla.firefox

com.opera.browser

com.opera.mini.native

com.uc.browser.en

mobi.mgeek.TunnyBrowser

com.ksmobile.cb

com.yandex.browser

com.explore.web.browser

com.mx.browser

com.htc.sense.browser

com.asus.browser

com.dolphin.browser.express.web

com.baidu.browser.inter

com.appsverse.photon

com.apusapps.browser

com.jiubang.browser

org.adblockplus.browser

com.boatbrowser.fre
e

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

Browser family

%
 v

ul
ne

ra
bi

lit
y

Category: SOP CSP Cookie Referrer−Policy X−Frame−Options Strict−Transport−Security X−Content−Options Sandbox

Fig. 9: Vulnerability of the latest browser versions on the three most popular Android versions. NA indicates that a given browser
could not be installed on a given Android version (i.e., its minimum required version was more recent than the provided one).

version to the overall security of each mobile browser. Even
though one may initially think that these two are independent,
because most mobile browsers are built around WebView
(Android’s component for showing web content in apps), they
are, in fact, tightly dependent.

To quantify this dependency between security-mechanism
support and Android version, we installed and tested the most
recent version of the twenty evaluated mobile browsers on
Android Lollipop (version 5.1), Marshmallow (version 6.0)
and Nougat (version 7.1). These are the three most popular
Android versions in the market, according to statistics from
July 2018 [39]. Figure 9 shows the results of this experiment.
One can observe that, for the majority of mobile browsers,
there is a clear security improvement when they are installed on
newer Android versions, since they benefit from more recent
WebView implementations.

The corollary from this finding is that two users with the
same version of the same browser installed, can be experienc-
ing vastly different levels of security. This is counter-intuitive
and significantly complicates the life of web developers who
cannot assume the presence of certain security mechanisms,
based solely on the family and version of the browser being
utilized. This is also the reason why, for a few browsers such
as the Boat browser, the vulnerability rates shown in Figure 9
differ from the rates of the most recent versions analyzed in
Section IV. The Hindsight framework (on which this work
relies) utilizes an SDK assignment algorithm which installs
a browser APK on a version that is as close as possible to
the target version, as specified by developers in their manifest
files. For these browsers, the target Android version was older
than version 5.1 and therefore the browsers would be even
more vulnerable than what is shown in Figure 9.

In terms of common vulnerabilities, Figure 9 also reveals
that 16 out of the 20 browsers do not support a specific
subset of the X-Frame-Options anti-clickjacking mechanism.
Specifically, most browsers do not support the ALLOW-FROM
directive, rendering websites that utilize it vulnerable to click-

jacking attacks (we further elaborate on this vulnerability in
Section VI). Moreover, through our tests, we discovered that
the Opera Mini browser (the fifth most popular browser in
Table II, with more than 100 million downloads) in its High
Data Savings mode, does not support X-Frame-Options at
all meaning that, unless a website utilizes the anti-clickjacking,
frame-ancestors CSP directive, it is vulnerable to click-
jacking attacks when rendered via this browser.

Among the most recent versions of the evaluated browsers,
UC mini (com.uc.browser.en) is an interesting outlier. It con-
tains vulnerabilities in almost every security mechanism cate-
gory regardless of the Android version on which it is installed.
We investigated older versions of the same browser and noticed
that they had the exact same vulnerabilities. Upon further
investigation, we realized that the UC mini is a proxy-based
browser which, as described in Section III-B, uses dedicated
remote servers to fetch web pages that after performing various
types of processing, such as down-scaling large images, send
the resulting page to mobile devices. Therefore, even though
we have obtained older version of UC mini browser, we cannot
know how their remote servers processed web pages in prior
years. At the same time, given that UC mini has a significant
number of vulnerabilities across all categories, we find it
doubtful that prior versions of their server-side code would
have supported more mechanisms than they do now.

Table V provides more details on the vulnerabilities present
in the most recent versions of evaluated browsers as tested
on Android 7.1, differentiating between a lack of support
(left) versus implementation bugs (right). If all tests of a
given mechanism fail, then we mark that mechanism as
not being supported by a given browser. In terms of non-
adoption, we discovered that even though CSP level 2 was
recommended by W3C as early as 2014 [46], it is still not
supported by HTC sense (com.htc.sense.browser). The non-
adoption of CSP invalidates website policies that aim to stop
the exploitation of XSS and clickjacking attacks. Similarly,
two browser families are not supporting SameSite cookies
thereby making users potentially vulnerable to Cross-Site Re-

10

TABLE V: Vulnerabilities of the latest browser versions on the highest tested Android version.

Non-adoption Implementation bugs
Mechanism Vulnerability # Examples Vulnerability # Examples

CSP CSP level 2 and 3. 1 com.htc.sense.browser Inconsistent fallback sources of
worker-src.

18 com.android.chrome,
com.UCMobile.intl

require-sri-for. 19 com.android.chrome,
org.mozilla.firefox

Allowing the loading of
worker-src resources over
an HTTP URL when the
equivalent HTTPS URL is
whitelisted.

13 com.opera.mini.native,
com.ksmobile.cb

upgrade-insecure-requests. 1 com.uc.browser.en For some directives (e.g.,
script-src), allowing
resources to load from
example.com when
the white-listed source is
*.example.com.

1 com.htc.sense.browser

Cookie SameSite cookies. 2 org.adblockplus.browser,
org.mozilla.firefox

Under samesite-strict
mode, cookies are disclosed
via POST requests and
samesite-lax is not
supported.

3 com.uc.browser.en,
com.htc.sense.browser

Scripts are allowed to access
cookies that are marked as
HttpOnly.

1 com.uc.browser.en

Referrer-Policy All directives except no-
referrer-when-downgrade.

14 com.opera.mini.native,
com.uc.browser.en

– – –

same-origin, strict-origin,
or strict-origin-when-cross-
origin values.

1 com.UCMobile.intl

X-Frame-
Options

All directives. 1 com.opera.mini.native Allowing subdomains of a
white-listed website (through
the ALLOW-FROM directive) to
frame the website.

1 com.uc.browser.en

ALLOW-FROM directive. 16 com.android.chrome,
com.UCMobile.intl

HSTS Basic mechanism and with
includeSubDomains.

1 com.uc.browser.en – – –

X-Content-
Type-Options

nosniff for scripts. 1 com.uc.browser.en – – –

Sandbox Script execution, form sub-
mission and top-level naviga-
tion after sandboxing.

1 com.uc.browser.en – – –

quest Forgery (CSRF) attacks. In terms of privacy-preserving
mechanisms, the Referrer-Policy is mostly unsupported by
15 out of the 20 evaluated browser families. Among these
browsers, UC Mobile (com.UCMobile.intl) partially supports
the Referrer-Policy mechanism but lacks support for im-
portant values, such as same-origin, strict-origin,
and strict-origin-when-cross-origin. For the rest
of the browsers, they merely support the basic Referrer-
Policy value (no-referrer-when-downgrade), which
was enforced by browsers even before a dedicated referrer-
controlling mechanism was introduced. Finally, the HTTP
Strict-Transport-Security (HSTS) header is utilized to prevent
SSL-stripping-like attacks but is not supported by the most
recent version of the UC mini (com.uc.browser.en), along with
X-Content-Type-Options and iframe sandboxing.

Next to a complete lack of support, it is equally
important to uncover previously unknown implementation
bugs, shown in the right column on Table V. For cer-
tain CSP directives, we discovered vulnerabilities that al-
lowed the loading of content from origins other than the
ones listed in the Content Security Policy. We also discov-
ered only partial support for SameSite cookies and imple-
mentation errors that allowed access to HttpOnly cook-
ies via JavaScript. Finally, UC mini (com.uc.browser.en) is

also vulnerable because of a poor implementation of the
ALLOW-FROM directive of X-Frame-Options. For example,
if wordpress.com deploys an X-Frame-Options header
specifying that https://wordpress.com is allowed to
frame the page, the browser allows all subdomains of
wordpress.com to frame the website, including poten-
tially untrusted ones, e.g. attacker.wordpress.com. As
before, our findings demonstrate that even the most recent
versions of mobile browsers executing on the most popular
Android version, are not free from issues related to their
support of popular security mechanisms.

VI. VULNERABILITY CASE STUDIES

A. Anti-clickjacking mechanisms

X-Frame-Options is an established security mechanism for
preventing clickjacking attacks (Rydstedt et al. already discuss
X-Frame-Options in their 2010 study of clickjacking [34]) and
yet most browsers still do not fully support it. Through our
experiments (Section V), we discovered that Google Chrome,
and the vast majority of other browsers which build on
WebView, treat the ALLOW-FROM directive as a wrong option,
and altogether discard the X-Frame-Options header.

11

To understand the consequences of this decision, we
crawled the main pages of the Alexa top 50K websites and
discovered that 231 out of the 10,752 websites that make use
of the X-Frame-Options mechanism, utilize the ALLOW-FROM
value which is recognized by Firefox but disregarded by
Chrome and other mobile browsers. The majority of these web-
sites (175/231) do not utilize the frame-ancestors CSP
directive, and are therefore vulnerable to clickjacking attacks
when they are rendered through most mobile browsers. These
websites include American and Russian banks, government
websites of US, China, Brazil, and India, cloud instrumentation
services, credit-score monitoring services, adult websites, and
Spanish and Australian telecommunication companies. All of
these websites have user accounts which could be abused
through clickjacking attacks to extract personal and financial
information. In Section VII, we describe the process of reach-
ing out to them, and our progress at the time of this writing.

An additional complication arises when both CSP’s
frame-ancestors and X-Frame-Options are present. De-
velopers may, by accident, specify a different framing policy
in the X-Frame-Options header than the one they specify in
the frame-ancestors directive. In fact, we did observe
conflicting framing policies among Alexa top 50K websites,
including some famous shopping and medical websites. Such
conflicting specifications coupled with incorrect handling by
mobile browsers may result in potential security threats.

To understand the effects of conflicting anti-clickjacking
policies, we tested how mobile browsers are handling such
conflicts. The CSP standard explicitly states that in the pres-
ence of both mechanisms, the browser should only enforce
the frame-ancestors directive and ignore the X-Frame-
Options header [47]. We discovered that 15% of the tested
mobile browsers (53 out of 351 APKs belonging to 9 different
families) show vulnerabilities in how they handle conflicting
policies. These vulnerable browsers include popular ones such
as Chrome, Opera and Yandex browsers. Fortunately, when
testing the most recent browser versions on Android 7.1, only
UC mini (com.uc.browser.en) remains vulnerable.

B. SameSite cookies

SameSite cookies is a recent mechanism for preventing
CSRF attacks in the browser by disabling the use of cookies
in a cross-origin context. Contrary to the X-Frame-Options
mechanism, Chrome was the very first browser to support it,
as early as May 2016. However, looking at the Alexa top 50K
websites, only 93 of them have added the “samesite” option
in their cookie headers. This shows a strong disparity in the
adoption of different security mechanisms. Even if the biggest
browser vendors show their support for a new mechanism,
there is no guarantee that websites will adopt it by potentially
replacing their existing mechanisms (similar to the expectation
that web developers would replace their X-Frame-Options
mechanism with the CSP frame-ancestors directive).

For the websites that actually do make use of the SameSite
cookie attribute (including an Italian bank and the biggest
online streaming platform), they may not get the protection
they expect from this option since many browsers do not
support it. For example, Firefox and the Adblock browser do
not support this option in their latest versions. Similarly, none

of the WebView-based browsers like KSMobile, Explore, and
the Asus Browser support the option on devices with Android
6.0 or older. The only safe option would be to make use of
both SameSite cookies and hidden nonces in forms, until some
indeterminate time in the future, when one could assume that
all browsers support this new mechanism.

VII. DISCUSSION

A. Summary of findings

By automatically exposing 351 mobile browser versions—
belonging to the 20 most popular Android browser families—
to 395 tests, we quantified the support of security mechanisms
in their most recent versions, as well as the evolution of such
support since 2011. We discovered that, even though most
browsers support more security mechanisms over time, the rate
of support is not the same across browsers and across security
mechanisms (Section IV-A). We also discovered the lack of
support in most mobile browsers for specific anti-clickjacking
directives, leaving hundreds of popular websites utilizing them
vulnerable to attacks, as well as lack of proper support for
SameSite cookies and Referrer-Policy.

We used the Internet Archive to quantify the window of
vulnerability from when a popular website requests a security
mechanism until that mechanism is supported by a sufficiently-
large fraction of mobile browsers (Section IV-B). Through
that experiment, we observed that there are large multi-year
windows of vulnerability for most security mechanisms. This
signifies that, with regard to the evaluated mechanisms, the
users of mobile browsers are less secure when browsing
websites than users of desktop browsers. We quantified the
number and types of security regressions (Section IV-C) and
identified browsers, such as the Boat and Next Browsers,
which have not been updated for over two years and are still
utilized by millions of Android users. Moreover, by evaluating
the same browser version on different Android versions, we
discovered that the users of the same version of the same
browser, can be experiencing vastly different levels of security
when browsing the web (Section V). Finally, we evaluated the
behavior of browsers when conflicting policies for different
security mechanisms are requested and observed that many
browsers are still deviating from official specifications (Sec-
tion VI).

B. Ethical Considerations and Vulnerability Reporting

All of the 138K tests conducted against mobile browsers
were executed locally against our own copies of these browsers
running on dedicated smartphones. As such, real users never
came into contact with our tests.

In terms of vulnerability reporting, we have already con-
tacted the owners of 20 different websites which, due to
the lack of X-Frame-Options support by Chrome and most
WebView-utilizing browsers, are currently vulnerable to click-
jacking attacks. We gave priority to government websites,
banks and credit unions, and websites that are highly ranked
according to Alexa. We received replies from most web-
sites, informing us that they have forwarded our informa-
tion to the appropriate team and we received confirmation
from a US government website and a cloud-automation plat-
form that they would follow our advice and utilize the

12

CSP frame-ancestors directive which is supported by
Chrome, WebView, and other modern browsers.

At the same time, we reached out to Google to in-
quire about the lack of support for the X-Frame-Options
Allow-From directive in Chrome and WebView. We were
told that this was a conscious decision back in 2012, in
favor of the more robust CSP frame-ancestors directive.
Chrome developers informed us that they would be willing to
add support for it if we conducted a large-scale measurement
to quantify the number of Chrome users affected by it and
provide a patch. We also reached out to the developers of
the UC Mini browser with a detailed report of all the issues
that we uncovered through our experiments. The developers
acknowledged our findings and offered us a bug bounty for
ethically disclosing them.

C. Implications

Our results categorically demonstrate that web developers
cannot assume that just because they requested a security
mechanism through the appropriate setting of an HTTP header
or HTML markup, all browsers receiving this request are
capable of correctly enforcing it. Moreover, the fact that the
same version of a given browser can be more vulnerable when
it runs on an older Android device further complicates the
development of secure websites, as the developers now need
to account for both the browser as well as the platform on
which it executes.

Our findings are reminiscent of client-side JavaScript issues
where different browsers support different APIs and thus
developers need to either account for popular browsers when
writing JavaScript code or utilize a library, such as jQuery,
that abstracts these details away. We argue that a similar
browser- and platform-aware framework is required for the
server side. This framework would be driven by a database
of supported security mechanisms for each version of each
mobile browser, combined with the most popular platforms on
which that browser could be executing.

Such a database could be automatically produced by tools
and techniques similar to the one we described in this paper.
By detecting the browser family, browser version, and OS
of a mobile device, the framework could then proceed to
use the appropriate security mechanisms for that combination.
For instance, upon detecting a mobile browser that does not
support the ALLOW-FROM directive, the framework could
automatically emit a CSP frame-ancestor header, even
if the website does not use CSP. Similarly, by detecting that
a user is utilizing an older version of the Opera Mini browser
before CSP was adopted, this framework could emit frame-
busting JavaScript code which checks whether the current
website is framed and redirects the top-level page if so [34].
This technique was once popular before X-Frame-Options was
standardized and it can still be used as a fallback technique
when browsers do not support more recent anti-clickjacking
mechanisms. Finally, for browsers with egregious lack of
support for security mechanisms (such as UC Mini), this
framework can deny serving the website, protecting users from
falling victim to attacks and putting pressure on the developers
of such browsers to properly support the missing security
mechanisms.

D. Mobile browsers on other platforms

We decided to analyze the adoption of security mecha-
nisms in mobile browsers as it is a domain that has been
greatly overlooked in the past. App stores offer many different
browsers and, as we show in our study, different browsers
may provide very different security guarantees. We chose to
focus specifically on Android because of the availability of
development/dynamic-analysis tools and its dominant market
share. We should point out that such a study on the iOS
ecosystem, while possible, is likely to be much less informa-
tive, since Apple forces app developers to use WebKit as the
sole rendering engine that can run on iOS [5]. As such, we
expect that all mobile browsers on iOS will exhibit the same
support of security mechanisms since they have to use the
same underlying engine.

VIII. RELATED WORK

To the best of our knowledge, our work is the first
systematic and longitudinal study of the adoption of security
mechanisms in mobile browsers. In this section, we briefly
describe prior work in the areas of security mechanisms for
the web and web-related mobile security.

Adoption of Security Mechanisms. Given the importance of
security mechanisms, researchers have investigated their use
in the wild. In 2010, Zhou and Evans performed a small-scale
experiment, measuring the adoption of HTTPOnly cookies and
discussing reasons why the adoption was not as high as it
could be [50]. Weissbacher et al. performed the first study
of CSP adoption finding that CSP was lagging behind other
security mechanisms [49]. Kranch and Bonneau performed
a similar study for the HSTS security mechanism [20]. Van
Goethem et al. quantified the adoption of a large number of
security mechanisms on the web, finding a positive correlation
between the ranking of a website and its use of security
mechanisms [43]. In 2016, Weichselbaum et al. conducted a
new study of CSP, finding that many developers were authoring
vulnerable CSP policies [48].

More recently, Mendoza et al. investigated the inconsis-
tencies between the security mechanisms used on the pages
designed for mobile browsers as opposed to pages designed for
desktop browsers [26]. Our work complements their research
in that we quantify whether mobile browsers are capable
of enforcing those security mechanisms, assuming that web
developers can properly configure them. Researchers have
also utilized the presence of properly configured security
mechanisms as a proxy for the overall security of a website
without the need to perform intrusive scanning [42, 44, 45, 29].

Evaluating Security-Mechanism Implementations. In 2010,
Singh et al. discovered inconsistencies in web browsers’ ac-
cess control polices which they attributed to the “piecemeal”
evolution of the policies [36]. In 2015, Hothersall-Thomas et
al. developed a testing framework called BrowserAudit to help
users evaluate the adoption of security mechanisms by different
browsers [19]. The authors used their framework to evaluate
desktop browsers by manually visiting their testing page with
each browser. In our study, we focus on automatically evalu-
ating a large number of mobile browsers and therefore have
to overcome many issues associated with the automation of
each browser. We decided against using BrowserAudit for our

13

tests since a significant number of security mechanisms and
settings have been developed after 2015.

In 2017, Schwenk et al. studied the Same-Origin Policy
implementations of ten different modern browsers [35]. They
discovered different browser behaviors in approximately 23%
of their test cases. In our prior work, we proposed Hindsight,
an automated browser-agnostic framework for evaluating the
vulnerability of mobile browsers to UI attacks [22]. To be
able to conduct our large number of tests, we rely on this
testing framework to quantify the adoption of a wide range
of security mechanisms over time, instead of evaluating a
browser’s vulnerability to a few specific attacks. In recent
work, Franken et al. evaluated the third-party cookie policies
of desktop browsers and showed that third-party trackers could
circumvent both built-in cookie policies, as well as those
offered by anti-tracking browser extensions [15].

Mobile Browser Security. Niu et al. were the first to
notice the different security problems associated with mobile
browsers compared to desktop ones [30]. They recognized
that limited screen real estate on mobile devices can cause
critical UI components, such as the URL bar, to disappear.
In 2011, Felt and Wagner investigated a novel security threat
for phishing attacks on mobile devices due to the absence of
reliable security indicators when switching between websites
and apps [14]. In 2012, Amrutkar et al. compared desktop
and mobile browsers and identified UI vulnerabilities abusing
the screen limitations of the latter [3]. The authors later
investigated the presence of security indicators in mobile
browsers [4]. Other researchers focused on the WebView
component of Android apps, identifying a number of security
issues that could be caused by malicious apps loading benign
websites and malicious websites being loaded by benign
apps [23, 24].

IX. CONCLUSION

As users spend more and more time on their mobile
devices and the web continues to be the platform of choice for
deploying applications, it is critical that mobile web browsers
cooperate with web servers to increase user security.

In this paper, we performed the first longitudinal study
of the support of security mechanisms, such as the Content
Security Policy (CSP) and the HTTP Strict Transport Se-
curity (HSTS), in mobile browsers. By designing 395 tests
to exercise the implementations of security mechanisms in
modern browsers, and exposing 351 unique APKs belonging
to the most popular mobile browsers to these tests, we were
able to evaluate the extent of such support in 20 different
mobile browser families for the last seven years. We discovered
that, even though browsers generally increase their support
over time, not all browsers behave the same way; some
browsers react more slowly than others and some browsers,
with millions of downloads, do not even update for multiple
years while their most recent versions are not capable of
enforcing key mechanisms, such as HttpOnly cookies and
HSTS. Moreover, we discovered that the conscious decision
of not supporting one mechanism in favor of a newer one
in Google Chrome has left hundreds of popular websites
vulnerable to clickjacking attacks, when viewed through most
of the evaluated mobile browsers. We quantified the rate of

change for individual security mechanisms and found that
most browsers are still not capable of properly enforcing
complicated mechanisms such as CSP. We also discovered
the presence of multi-year windows of vulnerability between
the time when popular websites request a security mechanism
and the time that most mobile browsers enforce it. Finally,
we made the counter-intuitive observation that the security-
mechanism support of browsers can depend on the Android
version of the underlying platform, and therefore two users
of the same version of the same browser can be experiencing
vastly different levels of security when browsing the web.

We argue that our findings not only call for better testing
on the side of browser vendors, but also show that developers
cannot just blindly assume the enforcement of their desired
security mechanisms. To that extent, we discussed the need
for the design and development of server-side solutions which
can adapt, in real time, to browsers based on the security
mechanisms that they support.

ACKNOWLEDGMENT

We thank our shepherd Zhenkai Liang and the reviewers for
their valuable feedback. This work was supported by the Office
of Naval Research (ONR) under grant N00014-17-1-2541 and
by the National Science Foundation (NSF) under grants CNS-
1813974, CMMI-1842020, CNS-1617593, and CNS-1527086.
Any opinions, findings, conclusions, and recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the Office of Naval Research
or the National Science Foundation.

REFERENCES

[1] D. Akhawe, W. He, Z. Li, R. Moazzezi, and D. Song, “Click-
jacking Revisited: A Perceptual View of UI Security.” in WOOT,
2014.

[2] D. Alexis and S. Lennart, “Can I use... Support tables
for HTML5, CSS3, etc,” 2014. [Online]. Available: https:
//caniuse.com/

[3] C. Amrutkar, K. Singh, A. Verma, and P. Traynor, “Vulner-
ableMe: Measuring systemic weaknesses in mobile browser
security,” in International Conference on Information Systems
Security. Springer, 2012, pp. 16–34.

[4] C. Amrutkar, P. Traynor, and P. C. Van Oorschot, “An empirical
evaluation of security indicators in mobile Web browsers,” IEEE
Transactions on Mobile Computing, vol. 14, no. 5, pp. 889–903,
2015.

[5] Apple Developer, “App Store Review Guidelines,” https://
developer.apple.com/app-store/review/guidelines/.

[6] J. Archibald, “Third party CSS is not safe,” Feb
2018. [Online]. Available: https://jakearchibald.com/2018/
third-party-css-is-not-safe/

[7] I. Archive, “Internet Archive: Wayback Machine,” https://
archive.org/web/, 2018.

[8] A. Barth, “RFC 6454 - IETF,” Dec 2011. [Online]. Available:
https://tools.ietf.org/html/rfc6454

[9] ——, “HTTP state management mechanism,” 2011.
[10] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for

cross-site request forgery,” in Proceedings of the 15th ACM
conference on Computer and communications security. ACM,
2008, pp. 75–88.

[11] I. Clelland, “W3C: Feature Policy,” https://wicg.github.io/
feature-policy/.

[12] comScore, “Mobile’s Hierarchy of Needs,” 2017.

14

[13] CVE-2010-3971, Oct 2010. [Online]. Available: http://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3971

[14] A. P. Felt and D. Wagner, Phishing on mobile devices. na,
2011.

[15] G. Franken, T. Van Goethem, and W. Joosen, “Who left open
the cookie jar? a comprehensive evaluation of third-party cookie
policies,” in 27th {USENIX} Security Symposium ({USENIX}
Security 18), 2018, pp. 151–168.

[16] Google, Jan 2018. [Online]. Available: https://developers.
google.com/web/fundamentals/security/csp/

[17] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and
J. Schwenk, “Scriptless attacks: stealing the pie without touching
the sill,” in Proceedings of the 2012 ACM conference on
Computer and communications security (CCS), 2012.

[18] S. Helme, 2018. [Online]. Available: https://securityheaders.com
[19] C. Hothersall-Thomas, S. Maffeis, and C. Novakovic, “Browser-

Audit: automated testing of browser security features,” in Pro-
ceedings of the 2015 International Symposium on Software
Testing and Analysis. ACM, 2015, pp. 37–47.

[20] M. Kranch and J. Bonneau, “Upgrading HTTPS in mid-air: An
empirical study of strict transport security and key pinning.” in
NDSS, 2015.

[21] J. Leyden, “RIP HPKP: Google abandons public key pinning,”
https://www.theregister.co.uk/2017/10/30/google hpkp/, 2017.

[22] M. Luo, O. Starov, N. Honarmand, and N. Nikiforakis, “Hind-
sight: Understanding the Evolution of UI Vulnerabilities in
Mobile Browsers,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM,
2017, pp. 149–162.

[23] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin, “Attacks on
WebView in the Android system,” in Proceedings of the 27th
Annual Computer Security Applications Conference. ACM,
2011, pp. 343–352.

[24] T. Luo, X. Jin, A. Ananthanarayanan, and W. Du, “Touchjacking
attacks on web in android, ios, and windows phone,” in Inter-
national Symposium on Foundations and Practice of Security.
Springer, 2012, pp. 227–243.

[25] M. Marlinspike, “More tricks for defeating SSL in practice,”
Black Hat USA, 2009.

[26] A. Mendoza, P. Chinprutthiwong, and G. Gu, “Uncover-
ing HTTP Header Inconsistencies and the Impact on Desk-
top/Mobile Websites,” in Proceedings of the Web Conference
(WWW’18), April 2018.

[27] Mozilla, Jan 2018. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/
Content-Security-Policy

[28] ——, “Same-origin policy,” Mar 2018. [Online]. Avail-
able: https://developer.mozilla.org/en-US/docs/Web/Security/
Same-origin policy#Changing origin

[29] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker,
W. Joosen, C. Kruegel, F. Piessens, and G. Vigna, “You are
what you include: large-scale evaluation of remote javascript
inclusions,” in Proceedings of the 2012 ACM conference on
Computer and communications security. ACM, 2012, pp. 736–
747.

[30] Y. Niu, F. Hsu, and H. Chen, “iPhish: Phishing Vulnerabilities
on Consumer Electronics.” in UPSEC, 2008.

[31] OWASP, “Cross-site Scripting (XSS),” Mar 2018. [On-
line]. Available: https://www.owasp.org/index.php/Cross-site
Scripting (XSS)

[32] ——, “OWASP Secure Headers Project,” https://www.owasp.
org/index.php/OWASP Secure Headers Project, 2018.

[33] OWASP, “SameSite Overview,” https://www.owasp.org/index.
php/SameSite, 2018.

[34] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson, “Busting
frame busting: a study of clickjacking vulnerabilities at popular
sites,” IEEE Oakland Web, vol. 2, no. 6, 2010.

[35] J. Schwenk, M. Niemietz, and C. Mainka, “Same-Origin Policy:
Evaluation in Modern Browsers,” in 26th USENIX Security
Symposium (USENIX Security 17). Vancouver, BC: USENIX
Association, 2017.

[36] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee, “On the in-
coherencies in web browser access control policies,” in Security
and Privacy (SP), 2010 IEEE Symposium on. IEEE, 2010, pp.
463–478.

[37] D. F. Somé, N. Bielova, and T. Rezk, “On the Content Security
Policy Violations due to the Same-Origin Policy,” in Proceed-
ings of the 26th International Conference on World Wide Web,
2017, pp. 877–886.

[38] O. Starov, P. Gill, and N. Nikiforakis, “Are you sure you want
to contact us? quantifying the leakage of pii via website contact
forms,” Proceedings on Privacy Enhancing Technologies, vol.
2016, no. 1, pp. 20–33, 2016.

[39] Statcounter, “Android Version Market Share Worldwide,”
http://gs.statcounter.com/android-version-market-share/
mobile-tablet/worldwide, 2018.

[40] Statista, “Android version market share
2018 — Statistic,” Feb 2018. [Online].
Available: https://www.statista.com/statistics/271774/
share-of-android-platforms-on-mobile-devices-with-android-os/

[41] B. Stock, M. Johns, M. Steffens, and M. Backes, “How the Web
Tangled Itself: Uncovering the History of Client-Side Web (In)
Security,” in Proceedings of USENIX Security, 2017.

[42] S. Tajalizadehkhoob, T. Van Goethem, M. Korczyński,
A. Noroozian, R. Böhme, T. Moore, W. Joosen, and M. van
Eeten, “Herding vulnerable cats: a statistical approach to disen-
tangle joint responsibility for web security in shared hosting,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2017, pp. 553–567.

[43] T. Van Goethem, P. Chen, N. Nikiforakis, L. Desmet, and
W. Joosen, “Large-scale security analysis of the web: Challenges
and findings,” in International Conference on Trust and Trust-
worthy Computing. Springer, 2014, pp. 110–126.

[44] T. Van Goethem, F. Piessens, W. Joosen, and N. Nikiforakis,
“Clubbing seals: Exploring the ecosystem of third-party security
seals,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2014, pp.
918–929.

[45] M. Vasek and T. Moore, “Identifying risk factors for webserver
compromise,” in International Conference on Financial Cryp-
tography and Data Security. Springer, 2014, pp. 326–345.

[46] W3C, “Content Security Policy - level 2,” https://www.w3.org/
TR/2014/WD-CSP2-20140703/, 2018.

[47] ——, “Content Security Policy Level 2: Relation
to X-Frame-Options,” https://www.w3.org/TR/CSP2/\#
frame-ancestors-and-frame-options, 2018.

[48] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc, “CSP
is dead, long live CSP! On the insecurity of whitelists and the
future of content security policy,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2016, pp. 1376–1387.

[49] M. Weissbacher, T. Lauinger, and W. Robertson, “Why is csp
failing? trends and challenges in csp adoption,” in International
Workshop on Recent Advances in Intrusion Detection. Springer,
2014, pp. 212–233.

[50] Y. Zhou and D. Evans, “Why Aren’t HTTP-only Cookies More
Widely Deployed?” in Proceedings of 4th Web 2.0 Security and
Privacy Workshop (W2SP), 2010.

15

