
A Dangerous Mix: Large-scale analysis of
mixed-content websites

Ping Chen, Nick Nikiforakis, Christophe Huygens, and Lieven Desmet

iMinds-DistriNet, KU Leuven
3001 Leuven, Belgium

{firstname.lastname}@cs.kuleuven.be

Abstract In this paper, we investigate the current state of practice
about mixed-content websites, websites that are accessed using the HT-
TPS protocol, yet include some additional resources using HTTP. Through
a large-scale experiment, we show that about half of the Internet’s most
popular websites are currently using this practice and are thus vulnerable
to a wide range of attacks, including the stealing of cookies and the in-
jection of malicious JavaScript in the context of the vulnerable websites.
Additionally, we investigate the default behavior of browsers on mobile
devices and show that most of them, by default, allow the rendering of
mixed content, which demonstrates that hundreds of thousands of mobile
users are currently vulnerable to MITM attacks.

1 Introduction

Internet users today rely on HTTPS (HTTP over SSL/TLS) for secure commu-
nication of sensitive data. While websites are migrating to HTTPS, attackers
are also shifting efforts to break the TLS communication. Complementary to
protocol and infrastructure vulnerabilities in TLS and HTTPS, as illustrated by
recent attacks such as CRIME [19] and Lucky 13 [10], attackers can also exploit
mixed-content vulnerabilities to compromise TLS-protected websites.

In mixed-content websites, the webpage is delivered to the browser over TLS,
but some of the additional content, such as images and scripts, are delivered over
a non-secured HTTP connection. These non-secured communications can be
exploited by network attackers to gain access to wide set of capabilities ranging
from access to cookies and the forging of arbitrary requests, to the execution of
arbitrary JavaScript code in the security context of the TLS-protected website.

Desktop browsers are recently catching up to mitigate this vulnerability, but
the large majority of browsers on mobile devices, such as smartphones and tab-
lets, leave the end-user unprotected against this type of attack. This is worsened
by the fact that it is typically pretty straightforward to launch an active network
attack against a mobile user (e.g. via setting up a fake wireless hotspot).

In this paper, we report on an in-depth assessment of the state-of-practice
with respect to mixed-content vulnerabilities. In particular, the main contri-
butions of this paper are the following: (1) We study the different types of

mixed-content inclusions, and assess their security impact. (2) We present a de-
tailed analysis of mixed-content inclusions over the Alexa top 100,000 Internet
domains, showing that 43% of the Internet’s most popular websites suffer from
mixed-content vulnerabilities. (3) We document the behavior of mobile browsers
in the face of mixed-content inclusions. (4) We enumerate the best practices as
well as novel mitigation techniques against mixed-content inclusions for browsers,
website owners and content providers.

2 Problem statement

It is well-known that HTTP is vulnerable to eavesdropping and man-in-the-
middle (MITM) attacks, and HTTPS is designed to precisely prevent these
attacks by adding the security capabilities of SSL/TLS to HTTP. SSL/TSL
enables authentication of the web server, and provides bidirectional encryption
of the communication channel between the client and server. Apart from the
attacks against the SSL/TLS protocol, we show that attackers can also exploit
mixed-content vulnerabilities to compromise TLS-protected websites.

The attacker model used in this paper, is the active network attacker. The
active network attacker positions himself on a network between the web browser
and the web server, and is able to intercept and tamper with the network traffic
passing by. The attacker can read, modify, delete, and inject HTTP requests and
responses, but he is not able to decipher encrypted information, nor impersonate
an HTTPS endpoint without a valid TLS certificate.

In mixed content (also known as non-secure/insecure content) websites, the
web page is delivered to the browser over TLS, but some of the additional con-
tent, such as images and scripts, are directly delivered over a non-secured HTTP
connection from the content provider towards the web browser. Although the act-
ive network attacker can not attack the web page delivery over HTTPS, he can
still compromise the TLS-enabled website by compromising any of the additional
resources that are loaded over HTTP.

3 Impact of mixed content attacks

Five specific types of mixed content are studied in this paper: Image, iframe, CSS,
JavaScript and Flash. The impact of different types of mixed content attack can
be categorized as follows:

– Cookie stealing: When a browser requests mixed content, it may include
cookies associated with the content provider, which allows the attacker to
obtain the cookies. Moreover, if the content provider and the TLS-protected
website using mixed content happen to be on the same domain, sensitive
cookies used over HTTPS can get exposed to the attacker via a HTTP
request, unless the cookie is protected by the “secure” flag.

2

– Request forgery: As mixed content is requested over HTTP, the attacker
can manipulate the HTTP requests and responses and use them to trigger
or forge arbitrary HTTP requests, which may lead to certain variants of
SSL-Stripping [16] and Cross-Site Request Forgery (CSRF) [12] attacks.

– DOM data leakage: Mixed content may leak confidential data that is
displayed as part of the HTTPS webpage. For example, mixed-CSS content
can be used to obtain sensitive data in the DOM via scriptless attacks [14]:
CSS selectors can match against particular content in the DOM, and leak
the result of the test by fetching a web resource (e.g. image) monitored by
the attacker.

– JavaScript execution: For mixed-JavaScript and mixed-Flash content,
the attacker can inject arbitrary JavaScript code that will be executed in
the context of the HTTPS website using the mixed content. This allows
the attacker to run arbitrary JavaScript code as if it was originating from
the TLS-protected site, and access a variety of security-sensitive JavaScript
APIs. Moreover, the attacker can inject malicious payloads, such as the BeEF
framework [2], to take over the user’s browser and launch various attacks.

The various types of mixed content and their impact are summarized in Table 1.

Type Cookie stealing Request forgery DOM data leakage JavaScript execution

Image x x

iframe x x

CSS x x x

JavaScript x x x x

Flash x x x x

Table 1: Impact of mixed content attacks

4 Data collection

In this section, we describe the setup and results of our large-scale data collection
experiment.

4.1 Crawling experiment

Starting with Alexa’s list of 100,000 most popular domains, we first filter out
the domains that are not available over TLS. Next, we use the Bing Search API
[3] to automatically query for a set of 200 HTTPS page URLs for each website.

To discover mixed-content inclusions on TLS-enabled websites, we apply the
approach as described in [18]: the headless HtmlUnit browser is used to visit
the page URLs, and the HTTPS pages are analyzed to locate mixed-content
inclusions. HtmlUnit is able to execute the JavaScript code similar to a real
browser, and as such, it can detect dynamically-included mixed content.

3

4.2 Data collection results

With the aforementioned approach, we extracted 18,526 HTTPS websites from
Alexa top 100,000 Internet domains, and in total 481,656 HTTPS pages are
crawled, with an average of 26 HTTPS pages per website.

From the crawled HTTPS websites, 7,980 (43%) were found to have at least
one type of mixed content. This means that almost half of the HTTPS pro-
tected websites, are vulnerable to one or more of the attacks mentioned in the
previous sections. In total, 620,151 mixed-content inclusions were found through
our experiment, which maps to 191,456 mixed-content files and 74,946 HTTPS
webpages. Table 2 gives an overview of the distribution of mixed-content in-
clusions. Image and JavaScript are the most included mixed content types, with
30% and 26% of the HTTPS websites using them respectively, while mixed-Flash
content is much less used. As for the distribution over remote and local inclu-
sions for each mixed content type, mixed iframe, JavaScript, and Flash content
is mostly served by remote providers, while the majority of mixed Image and
CSS inclusions are locally included.

Inclusions % remote inclusions # Files # Webpages % Websites

Image 406,932 38% 138,959 45,417 30%

iframe 25,362 90% 15,227 15,419 14%

CSS 35,957 44% 6,680 15,911 12%

JavaScript 150,179 72% 29,952 45,059 26%

Flash 1,721 62% 638 1,474 2%

Total 620,151 47% 191,456 74,946 43%

Table 2: Overview of distribution of mixed-content inclusions

To better understand the risks associated with websites using different types
of mixed content, we calculate the percentage of websites that are exposed to
different levels of attacks as shown in Figure 1. The calculation is based on the
impact analysis for each mixed content type (Table 1), which groups different
types of mixed-content inclusions according to the associated attacks. Figure 1
shows that 27% websites are exposed to attacks up to “JavaScript execution”,
by including mixed JavaScript or Flash content.

14%	 2%	

27%	 57%	

Websites	 exposed	 up	 to	 Request	 Forgery	 &	 Cookie	 Stealing	

Websites	 exposed	 up	 to	 DOM	 data	 leakage	

Websites	 exposed	 up	 to	 JavaScript	 execuFon	

Secure	 HTTPS	 websites	 without	 mixed	 content	

Figure 1. Percentage of TLS-enabled websites vulnerable to different attacks

4

5 Discussion

In this section, we discuss some characteristics of mixed content and the websites
including them, as discovered in our experiment. First, we identify the distribu-
tion of websites having mixed content over different categories, and then present
some examples of important websites having mixed-JavaScript content. Second,
we investigate the availability of mixed content files over HTTPS.

5.1 Websites having mixed content

To better understand the websites having mixed content, we categorize the web-
sites based on McAfee’s TrustedSource Web Database [17]. Most of the visited
HTTPS websites are categorized into 88 categories, with 1,181 websites remain-
ing uncategorized. The majority of visited websites (66%) can be categorized
into 10 popular categories. As shown in Figure 2, The ‘Government/Military’
websites are doing better than websites in all other categories, with “only” 31%
of them websites having mixed content. 38% of ‘Finance/Banking’ websites hav-
ing mixed content, which is worrisome, since these websites contain valuable
information and are typically the targets of attackers.

0%	

10%	

20%	

30%	

40%	

50%	

0	

500	

1000	

1500	

2000	

2500	

#	 visited	 HTTPS	 websites	

%	 Mixed-‐content	 website	

%	 Mixed-‐Image	 website	

%	 Mixed-‐JavaScript	 website	

%	 Mixed-‐CSS	 website	

%	 Mixed-‐Flash	 website	

%	 Mixed-‐iframe	 website	

Figure 2. Distribution of websites having mixed content over top 10 categories

For the 74,946 HTTPS pages having mixed content, we check whether these
pages have an equivalent HTTP version of the same content. While most of them
do have an HTTP version, 9,792 (11%) pages are only served over HTTPS, and
these “HTTPS-Only” pages map to 1,678 (9%) HTTPS websites. We consider it
likely that these “HTTPS-Only” pages contain more sensitive data and should
be more secure, compared to those pages having the same content served over
HTTP. Thus, mixed-content inclusions on “HTTPS-Only” pages can have more
severe consequences when successfully exploited.

5

Table 3 lists ten examples of “HTTPS-Only” pages (selected from Alexa’s top
1,000 websites) having mixed-JavaScript content. These pages provide import-
ant functionalities like “Account Signup” , “Account Login” , and “Password
Recovery”, all of which process sensitive user information and thus can lead to
user-data leakage if the mixed-JavaScript content is intercepted by an attacker.

HTTPS-Only pages Functionality

www.aweber.com/signup.htm Account Signup
www36.verizon.com/callassistant/signin.aspx Account Login
secure.pornhublive.com/forgot-password/ Password Recovery
euw.leagueoflegends.com/account/recovery/password Password Recovery
ww15.itau.com.br/privatebank/contatoprivate/en/index.aspx Contact Form
dv.secure.force.com/applyonline/Page1?brand=ccn Application Form
www.tribalfusion.com/adapp/forms/contactForm.jsp Contact Form
support.makemytrip.com/ForgotPassword.aspx Password Recovery
jdagccc.custhelp.com/app/utils/create_account/red/1 Account Signup
ssl6.ovh.net/~pasfacil/boutiquemedievale/login.php Account Login

Table 3: Ten example “HTTPS-Only” pages having mixed-JavaScript content

Of the 1,678 HTTPS websites that have “HTTPS-Only” pages, we found
97 websites that are using HTTP Strict Transport Security (HSTS) policy [15],
which indicates that these websites are making use of the latest protection tech-
nology for ensuring the use of SSL, but they still fail to achieve their goal by
including mixed content from insecure channels.

5.2 Providers of mixed-content files

For the total of 191,456 mixed-content files, we check whether the providers
serve these files over a secure HTTPS channel next to their insecure HTTP
versions. While the majority of mixed JavaScript, iframe and CSS content files
are available over HTTPS, the percentage of mixed Image content files available
over HTTPS is significantly less, as shown in Table 4. Though website owners
should be responsible for the mixed content issue, the data in Table 4 indicates
that blaming them is too simplistic, since it ignores the fact that approximately
half of the mixed content files are only available over HTTP.

Type # Files % HTTPS-Available Type # Files % HTTPS-Available

Image 138,959 40% JavaScript 29,952 58%

iframe 15,227 77% Flash 638 46%

CSS 6,680 60% Total 191,456 47%

Table 4: Percentage of “HTTPS-Available” files, per mixed content type

6

6 Mixed content mitigation techniques

In this section, we investigate and enumerate protection techniques that can be
used for browsers, TLS-protected websites, and content providers, to mitigate
the issue of insecure inclusion of content.

6.1 Browser Vendors

Blocking mixed content at the browser-level, is the most straightforward way to
mitigate the mixed content issue. While most desktop browsers have developed a
mixed-content blocker to protect users against insecure content, mobile browsers
strongly lag behind on this, despite the fact that mobile browsing is becoming
increasingly important to users. According to recent statistics from StatCounter,
the market share of mobile browsing has almost tripled in the last two years,
having reached 16.08% in June 2013.

As part of our study, we investigated how all the major mobile browsers for
Android, iOS, Windows Phone and Windows RT platform handle mixed content
– shown in Table 5. We unfortunately discovered that most of them do not have
a mixed-content blocker, with the exception of Chrome for Android and IE 10
Mobile which protect the user against mixed content. Firefox for Android plans
to have a mixed-content blocker in a future release [1].

Platform Mobile browser blocked ? secure padlock shown ?

Google Android 4.2

Chrome 28 Yes with a yellow triangle
Firefox 23 No No
Android browser No open padlock
Opera Mobile 12 No No

Apple iOS 6.1
Safari 6 No No
Chrome 28 No with a yellow triangle
Opera Mini 7 No No

Windows Phone/RT 8 IE 10 Mobile Yes No

Table 5: Mobile browsers’ behavior towards mixed content

With respect to desktop browsers, Internet Explorer (IE) is the first browser
that detected and blocked mixed content with IE 7, released in 2006. When mixed
content is detected, the browser warns the user and allows her to choose whether
insecure content should be loaded [7]. Many users, however, would probably click
“Yes”, rendering the mixed-content blocker useless [21]. An elegant way to handle
mixed content would be to silently block mixed content without prompting the
users. This approach has been chosen in Chrome (version 21+) [8], Internet
Explorer (version 9+) [4], and the recently released Firefox 23 [9]. Safari and
Opera browsers do not currently have a mixed-content blocker, which means that
about 10% of desktop users are still exposed to the dangers of mixed content.1

1 Safari and Opera each owns 8.39% and 1.03% market share respectively, according to
the statistics of usage share of desktop browsers for June 2013 from StatCounter[6].

7

Chrome, IE, and Firefox all have a mixed-content blocker, but they only block
mixed iframe, CSS, JavaScript and Flash content, and mixed Image content is
left out. An interesting fact is that mixed-Image content is blocked in IE 7 and
IE 8, but it is not blocked in IE 9 and IE 10. Since mixed Image and iframe
content technically have the same impact which may lead to attacks “Request
forgery” and “Cookie stealing”, we recommend all browsers vendors to block
all types of mixed content, thus completely eliminating the mixed content issue
from the browser side. While this move would likely break some insecurely-coded
websites, the security benefits of mixed-content-blocking definitely outweigh the
temporary frustration of users when they encounter some websites that do not
properly work.

6.2 Website owners

TLS-protected websites can explicitly opt-in to only include content from secure
channels. As shown in Table 4, 47% of the mixed-content files are not correctly
included, since the secure version of the resources exist and could thus be used.
For the remaining set of mixed-content files that do not have a secure version,
the resources can be cached locally, or proxied using their own SSL server.

To provide better security, a website using HTTPS can use a combination of
the HTTP Strict Transport Security (HSTS) and Content Security Policy (CSP)
[20] protocols, as illustrated in Listing 1.1.

Listing 1.1. Protecting TLS-protected sites via HSTS and CSP
1 S t r i c t−Transport−Secur i ty : max−age=86400; includeSubDomains
2 Content−Secur i ty−Pol i cy : de fau l t−s r c https : ; \
3 s c r i p t−s r c https : ‘ unsafe−i n l i n e ’ ; \
4 s ty l e−s r c https : ‘ unsafe−i n l i n e ’

First, HSTS can be used to guarantee that webpages are only served over
HTTPS by forcing a compliant browser to only issue HTTPS requests for that
website (line 1). By enforcing the HSTS policy, it can prevent SSL-stripping
attacks [16]. Second, CSP can be used to detect mixed content violations (in
report-only mode), and to actively block mixed content by specifying that only
secure resources are allowed to be included (line 2). Notice that in this example
the unsafe-inline directives are added to preserve temporary compatibility (lines
3-4), but website owners are encouraged to fully embrace the CSP technology so
that they achieve full protection and no longer need these unsafe directives.

6.3 Resource providers

Resource providers can also mitigate the mixed content issue by offering content
over HTTPS (even only over HTTPS). Moreover, resource provider can also use
HSTS to migrate non-HTTPS resources automatically and secure to HTTPS
version. Notice, however, that not all browsers have support for HSTS policies
(e.g., IE 10 and Safari 6), and that HSTS inherently has a bootstrapping prob-
lem during a browser’s very first visit to an HSTS website. During this first
request, an active network attacker can strip the HSTS header and circumvent
this protection technique.

8

7 Related work

To the best of our knowledge, this paper is the first that attempts to system-
atically discover the current state of practice of mixed content and uncover the
various types of mixed-content inclusions and how they could be used to attack
users and services.

While HTTPS is widely used for securing web communications, many attacks
on HTTPS have been reported over the years [13]. Apart from the exploit of
cryptographic weaknesses and design flaws in the SSL and TLS protocols, e.g.,
CRIME [19] and Lucky 13 [10], the incorrect adoption and configuration of
HTTPS by websites, may also allow attackers to bypass HTTPS. For example,
websites not using an HSTS policy are vulnerable to SSL-Stripping attacks [16].
According to the latest surveys of August 2013, about 76% of HTTPS websites
have security issues with their SSL implementations [5].

Web browsers also play an important role in web security, since they can auto-
matically handle many sensitive, HTTPS security decisions, and provide secur-
ity indicators through their user interfaces. While, in the last few years, desktop
browsers, in response to various attacks like XSS and CSRF, have been sub-
stantially hardened, mobile browsers have unfortunately not caught up. Mobile
browsers, when compared to desktop browsers, have less support for displaying
HTTPS connection details, and for the warning about mixed content [11].

8 Conclusion

When migrating to HTTPS, many websites fail to fully update their applica-
tions, resulting in mixed-content inclusion, which can render the HTTPS pro-
tection useless. In this paper, we show that there is a considerable number of
TLS-protected websites that currently have mixed content. We also observed
that, while the desktop browsers are catching up to mitigate this issue, most
mobile browsers do not have protections against mixed content yet, despite the
increasing popularity of mobile devices. Since users are entering into the “Post-
PC era”, i.e., prefering mobile devices for regular Internet browsing and even
for sensitive online transactions, it is important for mobile browsers to develop a
mixed-content blocker, as several desktop browsers have already done. To handle
this transitory phase, we investigated and reported the best practices for web-
sites owners and content providers which can be used to counter the issue and
protect their users against MITM attacks.

Acknowledgements This research is partially funded by the Research Fund
KU Leuven, iMinds, IWT, and by the EU FP7 projects WebSand, NESSoS and
STREWS. With the financial support from the Prevention of and Fight against
Crime Programme of the European Union (B-CCENTRE).

9

References

1. Add support for Mixed Content Blocking - Android. https://bugzilla.mozilla.
org/show_bug.cgi?id=860581.

2. BeEF - The Browser Exploitation Framework Project. http://beefproject.com/.
3. Bing Search API. http://datamarket.azure.com/dataset/bing/search.
4. “only secure content is displayed” notification in internet explorer 9 or later. http:

//support.microsoft.com/kb/2625928.
5. SSL Pulse. https://www.trustworthyinternet.org/ssl-pulse/.
6. StatCounter. http://statcounter.com/.
7. Internet Explorer 8 Mixed Content Handling. http://msdn.microsoft.com/

en-us/library/ee264315(v=vs.85).aspx, 2009.
8. Ending mixed scripting vulnerabilities. http://blog.chromium.org/2012/08/

ending-mixed-scripting-vulnerabilities.html, 2012.
9. Mixed content blocking enabled in firefox 23! https://blog.mozilla.org/

tanvi/2013/04/10/mixed-content-blocking-enabled-in-firefox-23/, 2013.
10. N.J. Al Fardan and K.G. Paterson. Lucky Thirteen: Breaking the TLS and DTLS

Record Protocols. In IEEE Symposium on Security and Privacy, SP ’13, pages
526–540, 2013.

11. Chaitrali Amrutkar, Patrick Traynor, and Paul C. van Oorschot. Measuring ssl
indicators on mobile browsers: extended life, or end of the road? In Proceedings of
the 15th International Security Conference, ISC ’12, pages 86–103. Springer, 2012.

12. Adam Barth, Collin Jackson, and John C. Mitchell. Robust defenses for cross-
site request forgery. In Proceedings of the 15th ACM conference on Computer and
communications security, CCS ’08, pages 75–88, New York, NY, USA, 2008. ACM.

13. Jeremy Clark and Paul C. van Oorschot. SoK: SSL and HTTPS: Revisiting Past
Challenges and Evaluating Certificate Trust Model Enhancements. In IEEE Sym-
posium on Security and Privacy, SP ’13, pages 511–525, 2013.

14. Mario Heiderich, Marcus Niemietz, Felix Schuster, Thorsten Holz, and Jörg
Schwenk. Scriptless attacks: stealing the pie without touching the sill. In Pro-
ceedings of the 2012 ACM conference on Computer and communications security,
CCS ’12, pages 760–771, New York, NY, USA, 2012. ACM.

15. J. Hodges, C. Jackson, and A. Barth. HTTP strict transport security (HSTS).
IETF RFC, 2012.

16. Moxie Marlinspike. New Tricks for Defeating SSL in Practice. Blackhat, 2009.
17. McAfee. TrustedSource Web Database. https://www.trustedsource.org/en/

feedback/url.
18. Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,

Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. You
are what you include: large-scale evaluation of remote javascript inclusions. In Pro-
ceedings of the 2012 ACM conference on Computer and communications security,
CCS ’12, pages 736–747, New York, NY, USA, 2012. ACM.

19. Juliano Rizzo and Thai Duong. Crime: Compression ratio info-leak made easy. In
ekoparty Security Conference, 2012.

20. Sid Stamm, Brandon Sterne, and Gervase Markham. Reining in the web with
content security policy. In Proceedings of the 19th international conference on
World wide web, WWW ’10, pages 921–930, New York, NY, USA, 2010. ACM.

21. Joshua Sunshine, Serge Egelman, Hazim Almuhimedi, Neha Atri, and Lorrie Faith
Cranor. Crying Wolf: An Empirical Study of SSL Warning Effectiveness. In Pro-
ceedings of the 18th Usenix Security Symposium, pages 399–416, 2009.

10

