
Meddling Middlemen: Empirical Analysis of the
Risks of Data-Saving Mobile Browsers
Brian Kondracki†, Assel Aliyeva‡, Manuel Egele‡, Jason Polakis?, Nick Nikiforakis†

†Stony Brook University
‡Boston University

?University of Illinois at Chicago

Abstract—Mobile browsers have become one of the main
mediators of our online activities. However, as web pages continue
to increase in size and streaming media on-the-go has become
commonplace, mobile data plan constraints remain a significant
concern for users. As a result, data-saving features can be a
differentiating factor when selecting a mobile browser. In this
paper, we present a comprehensive exploration of the security
and privacy threat that data-saving functionality presents to
users. We conduct the first analysis of Android’s data-saving
browser (DSB) ecosystem across multiple dimensions, including
the characteristics of the various browsers’ infrastructure, their
application and protocol-level behavior, and their effect on users’
browsing experience. Our research unequivocally demonstrates
that enabling data-saving functionality in major browsers results
in significant degradation of the user’s security posture by
introducing severe vulnerabilities that are not otherwise present
in the browser during normal operation. In summary, our
experiments show that enabling data savings exposes users to (i)
proxy servers running outdated software, (ii) man-in-the-middle
attacks due to problematic validation of TLS certificates, (iii)
weakened TLS cipher suite selection, (iv) lack of support of
security headers like HSTS, and (v) a higher likelihood of being
labelled as bots. While the discovered issues can be addressed,
we argue that data-saving functionality presents inherent risks
in an increasingly-encrypted Web, and users should be alerted
of the critical savings-vs-security trade-off that they implicitly
accept every time they enable such functionality.

I. INTRODUCTION

As smartphones have reached a near-ubiquitous presence,
with widespread adoption even in developing countries [15],
mobile devices account for almost half of the global Internet
traffic [19]. Furthermore, there is a considerable trend towards
the increased consumption of multimedia resources [67],
which directly conflicts with mobile data plans that limit the
amount of traffic allowed. Prior work has reported that users
address such limitations by altering their usage behavior and
planning for saving data for the future [47] (albeit not always
effectively [67]). This indicates that data-plan limits remain an
issue; as such, it comes as no surprise that mobile browsers
that purport to “save data” are extremely popular among users.
Even Chrome, the browser with the largest market share [58],
has recognized the benefits of data savings for offering users
a smoother and faster browsing experience [4].

These browsers, hereby referred to as data-saving browsers
(DSBs), divert users’ traffic through proxy servers that mediate
web requests, handle application-level logic, and return com-
pressed static pages and resources. This results in reducing the

volume of users’ network traffic as well as the computational
overhead for the client device. Free DSBs in Android are ex-
tremely popular, with installations ranging between 1 million
(Ninesky) and 5 billion (Chrome). Yet, no study exists on the
risks that data-saving practices pose to all these users.

In this paper, we aim to address this gap by conducting a
comprehensive empirical analysis of the DSB ecosystem. To
that end we first manually analyze 121 browsers from Google’s
Playstore, and study their behavior to identify browsers that
offer data savings, resulting in a dataset of nine data-saving
browsers (8 free and 1 paid). These browsers form the basis of
our analysis, which aims to quantify the possible degradation
in security that occurs when users enable data-saving modes
in mobile browsers. We analyze DSBs across five complemen-
tary dimensions: infrastructure, encryption, protocol headers,
application behavior, and user experience. Across all five di-
mensions, we search for both malicious and benign behaviors
which adversely affect user security and privacy.

We first conduct an exploratory investigation to map out the
network infrastructure supporting each DSB, and find multiple
cases of gateway proxy servers running severely outdated soft-
ware. To deliver on the promise of data savings, the network
infrastructure of DSBs must transform (e.g., compress) the
data that is sent to clients. However, this content modification
is diametrically opposed to the design goals of transport-layer-
security (TLS) which aims to guarantee the confidentiality and
integrity of data in transit. To modify response data, these
DSB proxy servers terminate a client’s TLS connection and
establish a separate TLS session with the end web server. This
TLS interception can void many of the security guarantees that
an end-to-end deployment of TLS would provide [32].

Intuitively, if the TLS stack of the proxy has a “weaker”
security posture than that of the client, a DSB’s infrastruc-
ture can compromise the user’s security and privacy. Our
experiments reveal considerable divergence in capabilities and
behavior when enabling data saving, which introduces severe
vulnerabilities. Four of the DSBs offer more weak cipher suites
while significantly reducing the number of strong cipher suites
offered; in Opera, the High and Extreme data-saving modes
exhibit a 55.5% and 60% reduction in the number of strong
cipher suites. To make matters worse, we find that Opera with
data-saving enabled fails to detect SSL certificates issued for
an incorrect subdomain, which can be exploited for various
attacks. Even more alarmingly, we find that Opera in data-

saving mode fails to warn users of web servers providing SSL
certificates signed by the infamous SuperFish CA [20]. We
demonstrate a practical man-in-the-middle (MITM) attack that
exploits this to intercept all traffic bound for a target domain
when requested by Opera’s data-saving proxy servers, while
visual security clues are still shown to the user (e.g., lock).

To assess the impact of TLS interception beyond insecure
TLS stacks, we establish a testing pipeline that compares the
content served by a web server with the data that arrives at
the end user’s device after the proxy optimizes it. We discover
that Opera injects CSS into HTML responses for blocking
advertisements. We also find that, contrary to Google Play
Store guidelines, Opera Mini transmits a persistent identifier
(OperaID) in conjunction with the device’s advertisingID
and IMEI, which nullifies the privacy a user can gain by
resetting the advertisingID. Additionally, we check for
data-leaking to third parties (accidentally or on purpose) due
to TLS interception, but find no evidence that the studied
browsers leaked any data for the duration of our experiments.

Furthermore, we highlight how data-saving functionality
undermines the security guarantees of web applications by
ignoring common security headers. We find that Opera Mini in
High data-saving mode, among other DSBs, ignores headers
such as X-Frame Options, Content Type Options, and CSRF
Tokens. Finally, we leverage Google’s reCAPTCHA service
to infer how web services perceive traffic originating from
DSBs. We find that, in general, the reputation of DSB user
traffic is affected by the proxy server they happen to connect
to, a decision made without the user’s discretion.

Our experiments reveal that enabling the data-saving mode
in browsers is equivalent to browsing the web through a
broken looking glass, as users’ experience is adversely affected
across multiple dimensions. The severe vulnerabilities that our
research has uncovered in major browsers with hundreds of
millions of users demonstrate that data-saving functionality
weakens established security practices, in return for minimal
traffic savings, according to our measurements of Alexa Top
100 sites and a sample of streamed video content.

In summary, our research contributions include:
• We present the first empirical analysis on the security

risks introduced by data-saving functionality in popular
mobile browsers. We build an automated testing frame-
work comprised of actual mobile devices.

• We conduct a comprehensive security investigation of the
DSBs available for Android and shed light on their inner
workings. Our experiments reveal a series of flaws, mis-
configurations, and problematic actions that significantly
impact the security and privacy of users’ communications.

• Due to the severity of our findings, we have started
the responsible disclosure process with browser vendors.
While HTTPS interception is inherently fraught with
risks, we outline guidelines to assist future DSB designs.

II. BACKGROUND

Data-saving browsers. To conserve precious data volume
(e.g., on limited mobile data plans) many popular mobile

Fig. 1: HTTPS request interception components of DSBs.

browsers offer a data-saving mode. Savings are accomplished
by routing user traffic through dedicated proxy servers which
make requests on behalf of the user and modify/compress the
responses before returning them to the user’s device.

The core intuition behind DSBs is that fast and powerful
proxy servers located in data centers (often physically closer
to the web servers) can download the full-sized resources,
potentially execute all required logic such as scripts, and
eventually return smaller, static pages to users. Through this
mode of operation, data-saving browser vendors promise users
data savings of up to 90% [6]. In contrast to typical HTTP
proxies, or so-called anonymizing browsers, whose purpose is
to mask the identity or location of a user, DSBs proxy user
traffic to effectively reduce the size of requested payloads in-
transit. All the browsers included in our study, make the user’s
IP address readily available to the end web servers through
the X-Forwarded-For HTTP header, and hence do not
advance user privacy.

HTTPS interception. Porter Felt et al. [35] reported that
adoption of HTTPS across the Web is constantly growing.
Consequently, data-saving browsers need to be able to process
HTTPS traffic so as to provide sufficient data savings to users.
As such, resources requested over secure HTTPS channels
need to be compressed, which requires the capability to
intercept and inspect users’ encrypted HTTPS traffic. Unlike
regular proxy servers, which simply route HTTPS traffic
between the source and destination without any knowledge
of the encrypted data being transmitted, data-saving browsers
split the encrypted end-to-end connection in two parts. The
browser on the user’s device initiates a TLS handshake with
a chosen proxy server upon enabling the data-saving mode.
All subsequent HTTPS requests are sent to the proxy server
where they are decrypted, read, and re-issued by the proxy
server on behalf of the user. Visual cues such as the URL
lock icon remain unchanged during this process, which can
lead users to assume that the secure communication channel
between the device and end web server is never broken. We
present an overview of this process in Figure 1.

Like traditional web browsers, data-saving browsers are
responsible for establishing an HTTPS connection with sites
that support it by completing a TLS handshake with the web
server and verifying the integrity of the presented certifi-
cate – in cases of errors, users should be explicitly alerted
as would be the case during a normal browsing session.
However, unlike traditional web browsers, the data-saving
pipeline introduces additional entities (i.e., the intermediate

proxy servers) that handle and modify both application and
protocol-level information. The combination of pivotal server
positioning, additional functionality, and content modifications
renders this ecosystem a minefield where flaws could have
severe security and privacy implications for millions of users.
This necessitates a holistic analysis of data-saving browsers
that explores all layers of their operation; from their network
infrastructure up to application-level behaviors. We seek to
determine the extent of both malicious as well as buggy
behaviors present in the ecosystems of each identified data-
saving browser. Note that we limit our study to the introduction
of such behaviors due to data savings. The security of mobile
browsers in general has been explored in past research [22],
[44], [45] and is thus outside the scope of this paper.

The ability of users to consent/opt-in to data saving differs
across the studied browsers. Most browsers we studied enable
data-saving by default, leaving users to manually opt out. Of
this group, Yandex, Opera, and Opera Mini, set their data-
savings mode to “automatic” by default, leaving the decision
of which traffic to proxy, up to the browser. Puffin Free and
Puffin Premium allow users to select if data savings should be
applied to all traffic, limited to mobile or WiFi, or disabled.
However, we discovered that whether data saving is enabled
or not, these browsers always proxy user traffic.

III. EXPERIMENTAL SETUP AND METHODOLOGY

In this section we first present our DSB selection process.
We then describe the infrastructure we set up for exploring
the DSB ecosystem, and then detail the methodology and
motivation behind each experiment.

A. Proxy Server Identification and Collection

Prior to studying the DSB ecosystem, it is important to
formulate a definition of what a data-saving browser is. For the
scope of this paper, we are interested in browsers which use
proxy servers to compress, transcode, or filter traffic in-transit
for the purpose of saving users’ mobile data. This definition
removes all browsers which simply proxy traffic (e.g., for
anonymization or bypassing geo-blocking).

Using this definition, we conducted a comprehensive search
of all data-saving browsers on the Google Play Store. To this
end, we downloaded the complete set of 121 apps returned for
the search terms: “Proxy Browser”, “Data Saving Browser”,
“Cloud Browser”, and “Internet Browser”. To limit the set
to browsers that proxy network traffic, we manually installed
each APK file onto an Android device, and enabled any setting
that resembles that of “Data Saving Mode”. Subsequently,
we visited a web server under our control and considered a
browser as a Proxy Browser if the IP address connecting to
our server was different from the Android device’s address.

While proxy browsers all route user data through proxy
servers, we are only interested in browsers that do this for the
purpose of saving data. To further filter our dataset down to
only include browsers that provide data saving functionalities,
we manually inspected the Google Play Store descriptions of
each proxy browser for any mention of data savings. This left

Proxy Data saving
Browser Name Downloads HTTPS by default

Chrome 5,000,000,000+ Yes* No
UC 500,000,000+ No Yes
UC Mini 100,000,000+ No Yes
Opera 100,000,000+ Yes Yes
Opera Mini 100,000,000+ Yes Yes
Yandex 100,000,000+ No Yes
Puffin 50,000,000+ Yes Yes
Ninesky 1,000,000+ No No
Puffin Premium 100,000+ Yes Yes

TABLE I: Data-saving browsers available on the Google Play Store.

us with our final dataset of 9 Data-Saving Browser apps listed
in Table I. While certain browsers (e.g., Opera Browser and
Opera Mini or UC Browser and UC Mini) are from the same
vendor, our experiments reveal differences in their behavior as
well as their infrastructure, as detailed in Section IV. As such,
we present all DSB apps independently. Furthermore, note that
data savings in Opera Mini can be configured in “High” or
“Extreme” mode. As this choice has severe implications on
how data savings are achieved, we treat these two settings
separately. The most pronounced difference between the two
modes is that in “High” mode the client and the gateway
proxy communicate via regular HTTP, where the proxy pro-
vides volume optimized HTML content in its responses. In
“Extreme” mode however, the proxy performs all rendering
activities, including script execution, and merely sends the
resulting rendering tree to the client. We mark Google Chrome
with a ”*” because although it does proxy HTTPS traffic, it is
distinct in that it does not proxy any origin-scoped data (e.g.
cookies and local storage). With major browser manufacturers
adding data-saving features to their browsers, DSBs serve a
significant portion of the overall Android user base.

B. Measurement Infrastructure

To accurately measure the effect of data-saving modes on
the browsing experience and security posture of users, we
perform all experiments on real devices: Motorola X4, Nexus
6P, and Nokia 6 all running Android 8.1 (Oreo). All devices
were updated and running the latest version of each browser
before testing. We limit the scope of this work to DSBs present
on Android mobile devices and leave exploration of similar
browsers on other platforms to future work.

Our devices are orchestrated by an automation framework
that uses the Android Debug Bridge (ADB) to handle all user
input (touch, swipe, text, etc.). Unless stated otherwise, our
system starts each test case with a clean slate, by clearing
the application data of the DSB under test. The framework
sends touch inputs to the device to launch each browser
and enable the data-saving mode if required. Lastly, the
framework navigates the browser to a list of webpages, each
specially designed to explore a specific dimension of the DSB
ecosystem and to shed light on the inner workings of each
browser (see Section III-H). Figure 2 depicts a high-level view
of our framework and experimental pipeline.

5. Request/response
network capture

4. Requesting proxy
server location, WHOIS,

fingerprint, etc.

Control Computer

...

A
ndroid D

ebug B
ridge (A

D
B

)

1. Clear app
data

2. Enable
data savings

mode

3. Direct
browser to

URLs

Web Server

IP
Enumeration

ReCaptcha
Scoring

Content
Manipulation

...

Data
Saving Proxy
Infrastructure

Fig. 2: Architecture of our framework and infrastructure for auditing
data saving browsers.

Since we follow a black-box testing approach to study
the proxy server infrastructure of each DSB, we conduct our
data collection from the two vantage points of a web client
and end web server. For example, we record the network
traffic seen at the user’s device using either a decrypting
TLS man-in-the-middle proxy or dynamic instrumentation of
the browser. At the same time, our end web server records
the IP address, geolocation, and Autonomous System of the
requesting endpoint proxy server.

C. Quantifying Data Savings

A data-saving feature can be the differentiating factor that
tips the scale in favor of a DSB over a traditional web
browser. Due to the substantial costs of mobile data plans
(e.g., Google’s Fi service charges $10 per gigabyte [37]),
and the abundance of high-volume media for consumption
(e.g., streaming video [34]), users can be enticed by claims
from DSBs of reducing users’ data consumption by up to
90% [6]. To quantify their effect, we measure the amount
of data used by each browser when the data-savings mode
is enabled and disabled, while visiting the Top 100 websites
according to Alexa (average consumption over five rounds).
For browsers with built-in, enabled-by-default ad blockers,
we disable the blocker to better understand the data savings
potentially gained from other types of resources (e.g., images
and videos). Besides measuring data savings during regular
web browsing activity, we also quantify the data savings that
DSBs provide when streaming video. To this end, we navigate
each DSB to a series of ten 3-minute long videos hosted on
YouTube and measure the effect on the consumed data volume
with data savings enabled and disabled. While we cannot
entirely simulate a typical user’s browsing patterns, our use
of Alexa Top 100 sites and video streaming is a best-effort
approach to understand how DSBs handle content typically
consumed by the average user.

D. Proxy Server Ecosystem Enumeration

As the quality-of-service that a DSB user can expect de-
pends on the proxy server infrastructure, it is important to
quantify the number and location of the involved servers.
This allows us to reason both about the magnitude of the

DSB ecosystem and its underlying infrastructure, as well as its
resilience to Denial of Service attacks and other geography-
specific issues (e.g., link-flooding attacks [43]).

To construct a map of the proxy infrastructure, we use
each DSB to request a web page from a server under our
control, and record information about each request. Our ex-
perimental framework combines multiple vantage points to
record information from both the client-side device and at
the server. Through this two-pronged approach we obtain a
view that cross-cuts multiple layers of activity on both ends
of the proxy server infrastructure, allowing us to learn what
happens to user traffic between the client device and web
server. Specifically, we record the following for each request:
(i) the IP address of the proxy server making requests to our
web server (we refer to this as the endpoint server address),
(ii) the IP address of the proxy server the browser directly
connects to (referred to as the gateway server address) – we
only record a gateway server if its IP address is different than
that of the endpoint server, and (iii) WHOIS and IP location
information of the identified servers. Finally, we also leverage
NMAP to fingerprint endpoint servers and gateways. This
information gives us a better understanding of the architecture
illustrated in Figure 1.

To obtain an accurate picture of the DSB ecosystem, and
explore proxy-server coverage across different geographic
markets, we use a VPN service to change our device’s location
when connecting to the data-saving browsers. We select 4
countries (United States, Germany, Japan, and Brazil) to obtain
diverse and accurate representations of the infrastructure of
DSBs in the largest markets that these browsers serve.

Proxy Server Fingerprinting. In conjunction with deter-
mining the number and distribution of the proxy servers that
support each browser, we also need to understand what types
of services are enabled on each proxy server. This allows
us to compare the proxy-server configurations of different
DSBs, the homogeneity of their supporting infrastructure, and
whether these servers are exposing known vulnerable software
to the public web. The presence of outdated or vulnerable
software on these servers presents a significant threat to the
DSB ecosystem, as these servers constitute single points of
failure for millions of users. Moreover, as many of these proxy
servers terminate TLS connections, they have access to plain-
text data, such as usernames, passwords, and session cookies.
Hence, an attacker who successfully compromises one or more
of these proxy servers can effectively MITM all user traffic
that flows through them to and from arbitrary end web servers.

Our system fingerprints proxy servers by performing two
NMAP [9] scans on the proxy servers it encounters. We refer
to them as basic and verbose scans. The basic scan uses
NMAP’s TCP SYN scan to infer open ports on a given proxy
server and the name of the software listening on that port (if
available). We repeat this scan every time we observe an IP
address in our proxy connections. To gain an understanding
of a proxy’s configuration beyond the list of open ports,
we further use NMAP’s banner-grabbing capabilities as the
verbose scan. Since this scan involves more interactions with a

target server than just sending a SYN packet, we only verbose-
scan each proxy’s IP address the first time it is encountered.
We perform these scans from the web server under our control
each time the server receives a request for our test web page.

Ethical considerations. From an ethical perspective, both
types of scans merely gather information and do not attempt
to exploit any service in any way; this is in line with widely
used prior work, e.g., the ZMap and Censys Internet-wide
scans [31], [33]. We opt to collect our own data (instead
of relying on third-party services like Censys) as we need
to ensure that the host being scanned is the host involved in
proxying the DSB’s connections. The practices of IP churn and
reuse (e.g., in public clouds) suggest that we cannot rely on
historical data as published by prior works. We are confident
that our fingerprinting approach did not adversely affect the
proxy’s performance or their users.

E. ReCAPTCHA

Captchas are often the first line of defense against automated
malicious activities. Captchas are challenges that are trivial
for humans to solve, but difficult for computers [62] (e.g.,
distorted character recognition), and Google’s reCAPTCHA is
the most prevalent captcha service [54]. As recent research has
demonstrated effective attacks against all traditional forms of
captchas (text [66], image [56], audio [25]), Google progressed
to a scheme that does not require users to complete a specific
task. The release of reCAPTCHA v3 removed all need for
explicit user actions, replacing it with a completely transpar-
ent, JavaScript “challenge”. This new approach compiles user
browsing patterns on a given page and returns a score that the
site administrator can use to decide how to respond. This score
ranges from 0 (very likely a bot) to 1 (very likely a human).

One potential signal employed by reCAPTCHA v3 is the
reputation of a user’s IP address. This lends the question: if
users browse the web from a DSB, will they receive a lower
reCAPTCHA v3 score if other users, sharing the same data-
saving proxy servers, misbehaved or were deemed to be bots?
If the question has an affirmative answer, then users of DSBs
will, on average, experience a degraded web compared to using
a traditional browser. According to reCAPTCHA’s official
guidelines, low scores should trigger actions like forcing a
two-factor authentication challenge, email verification, throt-
tling user actions, or flagging potentially risky transactions [7].

To understand how the use of a DSB affects reCAPTCHA
scores we perform the following experiment, which aims
to capture the experience of an average user that starts a
browser session using a DSB and accumulates some cookies
and browsing history before visiting a reCAPTCHA-protected
page. During regular browsing hours, which we define as
between 8am-6pm, our system periodically (once every 30
minutes) picks a random browser, clears all previously gener-
ated application data and begins a test. The device visits 5-10
random URLs from the Alexa Top 1K and navigates them
using a randomly selected set of swipe gestures. The browser
is then directed to a page under our control, where we record
the public IP address of the endpoint proxy which requests

the page, as well as the score returned by reCAPTCHA v3. In
order to limit the effect IP reputation has on our base case (data
savings mode disabled), we connect the test device directly to
our lab network without the use of a VPN service.

F. Proxy Server Security Auditing

The inclusion of data-saving proxy servers between users
and web servers presents a new level of complexity. Proxy
servers and browsers must both agree on what level of security
to provide to end users. A weak proxy server can introduce
vulnerabilities that would not exist had the browser directly
requested the web pages rather than fetch content through
the proxy. While mobile browser security has already been
studied extensively [22], [44], [45], we focus on the duality of
data-saving enabled vs. data-saving disabled. If data saving
is enabled, this means that a number of critical security
operations (such as the verification of a TLS certificate) now
happen at the proxy servers instead of the user’s local device.
To determine the implications of these two “competing” TLS
stacks, we performed the following experiments:

TLS cipher suite support. TLS is the backbone of con-
fidentiality and integrity for data in transit. During each
connection, the client and server negotiate the cipher suite that
will be used to facilitate encrypted communication over the
course of the session. It is vital that a user’s device advertises
secure cipher suites as, per the protocol, the end server can
only chose from suites offered by the client. When browsing
with a DSB that terminates the SSL connection at the proxy
server, users’ security is limited by the strength of the cipher
suites provided by the proxy server to the end web server,
instead of the ones present on their device. For this experiment,
we determine the number and strength of cipher suites offered
by each browser with data savings enabled and disabled.

TLS certificate error handling. The splitting of encrypted
HTTPS connections between the mobile browser and the
web server forces the user to, usually unknowingly, trust the
proxy server to not only properly verify TLS certificates, but
also convey accurate information on the state of a domain’s
certificate back to the device. If the proxy server mistakenly
reports a certificate as valid, the user would then be vulnerable
to many attacks which would not be possible if the data-
saving mode was disabled. To test these browsers, we first
present them with certificates that have known errors [23], such
as, self-signed certificates, expired certificates, and revoked
certificates. Next we conduct experiments using certificates
issued by authorities which are widely considered untrusted
(such as, RapidSSL and GeoTrust [64]).

G. Content Leakage

For DSBs to work as advertised, proxy servers must have
the ability to read and modify web pages and resources
passing through them. This extends to HTTPS traffic, where
sensitive information is more likely to be transmitted. To
understand whether private user information is accidentally
or intentionally leaked to third parties by these browsers,
we perform a series of experiments focusing on three types

of sensitive data: visited URLs, information embedded in
web pages, and credentials supplied to login forms. Clearly,
evidence of using such sensitive data would be disastrous for
a company’s reputation on security and, as such, is unlikely to
occur. Nonetheless, the incident with Microsoft’s Skype ser-
vice visiting all URLs mentioned in users’ encrypted chats [57]
prompted us to include such experiments.

URL leakage. The first dimension of leakage we measure
is that of URLs being visited after being accessed through a
DSB. It is important to note that in addition to the tunneling
of HTTP requests, DSBs also tunnel DNS requests to their
own resolvers. One issue that this introduces is the potential
for a third party (either the proxy server or their chosen DNS
resolver) to log the URLs and domains requested by users and
visit them at a later time. These third-party actors could be
malicious (e.g., intercepting DNS requests on a compromised
resolver), or curious (e.g., server administrators of a particular
browser). To test for this type of leakage, we visit unique
URLs on a web server under our control. Each URL starts
with a unique sub domain that encodes the browser name as
well as the current date, and includes the current timestamp
in place of a filename. Given that all URLs were unique and
complicated enough so as to not be guessable by a bot, any
later revisits to them can be confidently attributed to leakage.

Page content leakage. The second dimension of leakage we
measure focuses on the content of HTTP responses, as user
traffic includes highly sensitive information and transactions.
We create a number of pages which appear to contain sensitive
information from both the perspective of an automated pro-
gram which may be scanning web pages, or a curious human
that manually visits pages. These pages leak information such
as credentials for our site, credentials for accounts on third
party sites, and randomly-generated financial account numbers
hidden behind obfuscated links that log all visits. We employ
the same URL structure as in the previous experiment to avoid
attribution of visits to unrelated bot activity.

Credential leakage. The last dimension of data leakage we
examine is that of user credentials supplied to log in forms.
As a number of DSBs tunnel all HTTPS content, they have
access to the content of any such form. Thus, the existence
of a malicious or curious actor located on a proxy server can
compromise the accounts of users logging into their accounts
through a DSB. To test this, we create a set of unique accounts
for each DSB on Yahoo, Dropbox, and Proton Mail. We
choose these services as they provide descriptive information
on the locations and IP addresses of the devices that log
into an account. We then use each browser to log into the
accounts assigned to it. To differentiate our testing devices’
login attempts from any unauthorized third parties, we record
the IP address of the proxy server before logging in. Twice a
day, we use Selenium to extract up-to-date login information
for each account to detect potential accesses from third parties.

H. Content Manipulation

As DSBs compress and filter traffic flowing through their
proxy servers, users are at the mercy of any changes the

proxy server makes to the mediated server responses. These
changes can be done in malice, such as injecting or modifying
advertising IDs for redirecting revenue or tracking [38], or they
can occur by mistake, such as a proxy server dropping HTTP
headers it does not recognize. Regardless of the underlying
reason, these modifications render the user vulnerable to a
number of attacks. To determine the extent of such content
manipulation, we visit a series of web pages under our control
through a DSB while simultaneously directly visiting the same
web page using the Python Requests library [52]. We then
compare the two responses to detect any content changes.

On the end web server, which is under our control, we
create a set of 57 web pages that return different combinations
of security-sensitive HTTP headers. The pages also contain
multimedia content and fake Google Ads and Amazon Affiliate
advertisements. This setup allows us to record any HTTP
headers that are added, modified, or deleted by the proxy, as
well as any modifications made to the HTML content of each
page. To ensure that we observe the response directly from the
proxy server rather than what the DSB displays after client-
side processing, we capture responses either on the network
between the client device and proxy server or directly from
the network APIs on the device. When neither is possible, we
instrument the DSBs as described below.

Intercepting HTTP traffic. As shown in Table I, UC
Browser and UC Mini only proxy HTTP traffic. Hence, we
can obtain the proxied content via on-device, packet cap-
turing. However, while the data itself is in plain-text, these
browsers implement a custom protocol on top of HTTP to
conserve bandwidth. As the protocol merely combines multi-
ple HTTP responses into a single gzip compressed payload, it
is straightforward to extract the underlying data. For Yandex
and Chrome, the Polar Proxy [16] transparent SSL/TLS proxy
is sufficient for capturing responses directly from the network.
Note that Yandex does not intercept HTTPS traffic but does
use an HTTPS connection between the device and the DSB
proxies, for transferring modified HTTP traffic. The remain-
ing browsers employ certificate pinning, which prevents this
approach. To access their plain-text data, we instrument these
browsers and capture the information before it is passed to the
TLS library for encryption (when transmitting data), and after
the TLS library decrypts cipher-text (when receiving data).

Android relies on the BoringSSL [3] library to provide a
system-wide implementation and API for SSL/TLS. To capture
the data that the browser receives, we focus on the SSL_read
function which the browser uses to consume plain-text data
from the library after it has been decrypted. Analogously,
to transmit information, the browser passes plain-text data
to the SSL_write function. Thus, by hooking into these
functions, we can record sent and received data in plain-text.
We insert these hooks into the browser’s address space using
the AndHook [1] dynamic instrumentation tool. To identify
the location of the SSL_read and SSL_write functions in
the system-wide library we examine its symbol table.

Even though the system-wide implementation of BoringSSL
is available to all applications on an Android system via the

Web Browsing [MB] Video Streaming [MB]
Browser Off On % Saved Off On % Saved
Ninesky 206 32 84.21% 100 120 -20.14%
Puffin Free 110 25 77.31% 288 336 -16.71%
Opera Mini (Extreme) 174 45 73.81% 108 116 -7.34%
Puffin Premium 91 31 65.4% 298 334 -12.14%
Opera Mini (High) 182 93 48.84% 108 75 30.85%
Opera Browser 200 107 46.53% 111 111 0.08%
Chrome 176 116 33.8% 108 112 -3.95%
Yandex 87 79 8.58% 108 108 -0.05%
UC Mini 154 159 -3.36% 107 107 0.04%
UC Browser 138 154 -12.15% 102 111 -9.17%

TABLE II: Amount of data used and saved when browsing the top
100 Alexa sites and streaming ten 3-minute long Youtube videos with
data savings disabled (Off) and enabled (On).

libssl.so library, we observe that most browsers ship their
own, statically-linked copy. Moreover, some browsers contain
and use multiple distinct copies of this library. Complicating
the matter further is the fact that the statically-linked versions
of the libraries do not export symbols which makes identifying
the addresses that need to be hooked challenging. To identify
the necessary functions, we relied on a two-pronged approach.
First, we use dynamic analysis to obtain the user-mode call
stack when the read system call obtains cipher-text from
the underlying socket. Since BoringSSL is implemented as an
abstraction layer between the browser and a network socket,
SSL_read is part of that call stack. Second, when we cannot
reliably retrieve a correct call stack (e.g., because libunwind is
unreliable on ARM64), we rely on static analysis and manually
reverse engineer the libraries used by the browser.

Intercepting Non-HTTP(s) data. One of our interesting
discoveries is that Puffin (Free and Premium) and Opera
Mini (Extreme), render a web site on the proxy server and
merely transmit the rendering tree to the client. A rendering
tree cannot be meaningfully compared with the HTTP traf-
fic that generated it. To assess whether the Puffin proxies
modify content, we leverage the fact that Puffin and the
stock Chrome browser use the same rendering technology.
Thus, we manually perform a visual comparison between the
same site rendered by Chrome in normal operation mode and
Puffin. Furthermore, although there is no HTTP communica-
tion between the Opera Mini browser in the Extreme data-
saving mode and its supporting proxy server, the proxy server
provides an API to query the DOM that was rendered for the
client. Hence, we use this information to identify potential
modifications that Opera’s proxy servers may introduce.

IV. EXPERIMENTAL EVALUATION AND RESULTS

In this section we present our measurement results and
empirical analysis of the data-saving browser ecosystem.

A. Data Savings Mode Quantification

The left part of Table II shows the amount of data used in
downloads for each DSB when visiting the Alexa Top 100 web
sites. Comparing the data consumption with data savings on
vs. off, we observe that DSBs that proxy HTTPS traffic save
users a substantial amount of mobile data (up to 84%). Given
the recent push to an HTTPS-by-default web, we observe that

browsers which do not intercept HTTPS traffic (i.e., Yandex,
UC, and Ninesky), perform poorly in terms of data savings.

An unexpected finding is that UC Browser and UC Mini
consume more data when data savings is enabled. Neither
of these browsers tunnel HTTPS traffic so, like Yandex, they
cannot offer any data savings for the majority of modern web
traffic. We also observed that substantial traffic was sent from
our devices and the gateway proxy servers of these browsers
when data savings was enabled. This suggests that, due to their
inability/unwillingness to handle HTTPS traffic, these two
DSBs exchange more metadata for their data-saving operations
than the data they actually save on regular user traffic.

Conversely, we recorded the Ninesky browser as saving
users the greatest amount of data while also not proxying
HTTPS traffic. Over the course of our testing, we noticed 7
of the Alexa Top 100 web sites would fail to load when data-
saving mode was enabled using this browser. To prevent bias
in our results, we removed these sites from our testing set for
this browser, leaving a set of 93 pages to assess Ninesky’s
data savings capabilities, where Ninesky still saves its users
84.21% of their mobile data on average. These savings appear
to be due to client-side blocking of certain resources such
as advertisements, images, and videos. As such, we cannot
confidently state that the users of this browser would benefit
from this aggressive blocking of content or would eventually
switch to another mobile browser. Unlike the other browsers
in our study, Ninesky does not provide users the option to
disable the blocking of advertisements. Thus, we were unable
to isolate the source of data savings to its proxy servers.

Even though there clearly exist DSBs that are capable of
saving data for users who browse the web, web browsing is
not the main culprit of large data consumption. According to
recent statistics, YouTube is responsible for 38% of worldwide
mobile traffic [28]. Therefore, to assess whether these browsers
can save data in a more realistic scenario, we visited ten 3-
minute-long YouTube videos with data savings on and off,
and measured the data consumption. The results (shown in the
right part of Table II) indicate that only Opera Mini in High
mode, due to more aggressive video compression, provides
substantial data savings when streaming video, while all other
browsers either provide negligible data savings or consume
more data with data-saving mode enabled than disabled.

B. Proxy Server Ecosystem Enumeration

Proxy endpoint server enumeration. Figure 3 shows the
CDF of the total number of proxy endpoint servers encoun-
tered by each browser across all VPN endpoint locations,
visiting our web server with both HTTP and HTTPS over the
course of a 30 day recording period. Opera Mini in extreme
data savings mode used a total of 1,481 unique IP addresses
to connect to our server, exhibiting one-to-two orders of
magnitude more servers than the rest of the browsers. In
general we see that most DSBs are banding together in the
hundreds range, with Puffin premium being a negative outlier.

An interesting trend in this data involves the number of
proxy endpoint servers encountered by browsers of the same

United States Germany Brazil Japan Total w/o Duplicates
Browser HTTP HTTPS HTTP HTTPS HTTP HTTPS HTTP HTTPS HTTP HTTPS
Opera Mini (Extreme) 312 392 325 366 284 363 334 411 983 1106
UC Mini 251 N/A 239 N/A 229 N/A 253 N/A 414 N/A
UC Browser 236 N/A 252 N/A 220 N/A 246 N/A 403 N/A
Opera Mini (High) 75 75 126 121 78 77 179 206 348 359
Opera Browser 74 76 120 120 71 75 172 201 341 357
Yandex 175 N/A 175 N/A 166 N/A 175 N/A 200 N/A
Puffin Free 100 117 95 103 93 90 90 86 173 178
Chrome 24 48 21 51 24 48 17 52 67 116
Ninesky 32 N/A 7 N/A 23 N/A 39 N/A 63 N/A
Puffin Premium 18 17 17 17 18 17 17 17 19 17

TABLE III: Number of unique proxy endpoint server IP addresses per request protocol in each region.

 10

 100

 1000

 0 5 10 15 20 25 30

IP
 A

d
d
re

s
s
e
s
 (

u
n
iq

u
e
)

-
lo

g

Day

UC Browser
Chrome

Puffin
Puffin Free

Ninesky

Opera
Opera Mini (Extreme)

Opera Mini (High)
UC Mini
Yandex

Fig. 3: Unique proxy endpoint servers encountered with each DSB.

vendor. We can see that Opera Mini in high data savings
mode uses the same number of unique endpoint servers as
Opera Browser. This relationship also exists with the browser
pair of UC Browser and UC Mini. Further, we calculate the
Jaccard-Similarity index between the sets of proxy endpoint
IP addresses of each browser pair. We find Opera Mini in high
data savings mode and Opera Browser have a 93.7% similarity,
with UC Browser and UC Mini having an 86.3% similarity.
We can use this pattern to deduce a sharing of infrastructure
between these pairs of browsers as well as a similar logic
incorporated to determine the proper endpoint server to use.
However, this relationship disappears when looking at Opera
Mini in extreme mode as well as both Puffin Browsers. The
extra proxy endpoint servers seen by Opera Mini in extreme
mode can be attributed to a greater need for computing power
due to the aggressive rewriting of web pages that occurs in
extreme mode that is not present in High mode. However,
the divide in available proxies available to Puffin Premium
compared to Puffin Free requires an alternative explanation.
We opine that Puffin Premium users are sent to one of 19
servers that are different than the 256 servers used in Puffin
Free to potentially deliver different quality of experience to
paying users. The low number of premium servers is likely
because there are not enough paying users to justify a greater
investment in server-side resources.

To gain geographical insights into the DSB ecosystem, we
analyze our dataset with respect to each VPN location we used
as well as contrast HTTP and HTTPS requests, in Table III.
The sharing of proxy servers between families of browsers

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30

IP
 A

d
d

re
s
s
e

s
 (

u
n

iq
u

e
)

Day

UC Browser
Puffin

Puffin Free
Opera

Opera Mini (Extreme)
Opera Mini (High)

UC Mini
Yandex

Fig. 4: Unique proxy gateway servers encountered with each DSB.

becomes more evident, as such browsers encountered the same
amount of proxy endpoint servers with each of the request
types. The divergence in infrastructure support between the
top browsers is also clear. The Opera and UC browser families
have strong support in all regions we tested. Conversely,
browsers such as Yandex and Puffin have a single pool of
proxies that are shared by users across regions. Lastly, for most
browsers, we observe more servers handling HTTPS requests,
to account for the ever-increasing adoption of HTTPS [35].

Proxy gateway server enumeration. Figure 4 displays the
unique proxy gateway servers encountered by each browser.
As described in Section III-D, these IP addresses were
recorded during requests in which the IP address that the DSB
directly connected to was different than the one that made
the request to the end web server. Chrome and Ninesky are
absent from this figure as their infrastructure uses the same IPs
for gateway and endpoint servers. Our results show that the
gateway servers are fewer than the endpoint servers suggesting
that the former are used to route user traffic to endpoint servers
possibly for load balancing or routing efficiency. Moreover,
of the 165 distinct gateway servers, 79 are not present in
our proxy endpoint dataset, indicating that operators put more
resources on endpoint servers than gateways.

Proxy Server Fingerprinting Table IV shows the number
of distinct basic configurations observed for all data-saving
browsers that reply to port scans on their proxy endpoint
servers. We consider the set of open port, listening software
tuples as a proxy’s configuration. Our findings suggest that
Opera Mini in high data savings mode and Opera Browser

Browser Configurations Avg. Services
Opera Browser 23 18.7
Opera Mini (High) 28 18.9
Opera Mini (Extreme) 3 8.7
Puffin Free 3 1.3
Puffin Premium 1 2

TABLE IV: Number of distinct proxy server configurations and
average number of listening services for each data saving browser.

are based on the same underlying technology due to the large
overlap in their proxy-endpoint servers’ configurations.

The discovered heterogeneity among the proxy-server con-
figurations of Opera Browser and Opera Mini in high data-
saving mode was unexpected. One would assume that com-
mercial proxy servers would be created once and cloned to
any endpoint machine required. However, our results suggest
otherwise. Many of our scans report different Opera proxy
endpoint servers hosting the same service on slightly different
port numbers. For example, on one recorded proxy server, a
specific service was listening on port 9001 while on another
proxy server, the same service was listening on 9002. Our
results show these differences are not due to setup error.
Rather, many of these configurations exist across each of the
regions where Opera datacenters are located. There appears to
be a deliberate heterogeneity within a particular region, while
also a homogeneity is exhibited across all global regions. What
remains unclear is what purpose each of these configurations
serve and what causes a user’s traffic to be routed to a proxy
server of a particular configuration.

We found proxy endpoint servers hosting many listening
services, instead of limiting the number to the bare minimum
to reduce the attack surface. Table IV also presents the average
number of open ports on each DSB’s endpoint proxy servers.
While Puffin’s proxy servers listen on the expected ports,
Opera’s listen on many ports and often have duplicated ser-
vices listening on 10-15 different port numbers. Even though
running multiple instances of the same service on varying ports
does not expose servers to new attacks (compared to running
different services at different ports), it still complicates the
process of securing these servers via network-level defenses,
such as, firewalls and intrusion-detection systems. Table V
shows the outdated software we discovered listening on the
gateway proxy servers of many DSBs. We found that a
large percentage of DSB gateway proxy servers have listening
services which are almost 6 years old. These outdated services
are vulnerable to a wide range of attacks, such as, denial of
service, privilege escalation, and directory traversal.

C. ReCAPTCHA

Figure 5 shows the distribution of reCAPTCHA v3 scores
for all browsers on each day of our experiment period. We
limit our reporting period to 7 days as beyond that time frame
we record a convergence of returned scores with data savings
enabled and disabled. This convergence informs us that re-
CAPTCHA has identified our test devices behind DSB proxy
servers using methods such as browser fingerprinting. We

0 1 2 3 4 5 6 7
Days into Recording

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Re
CA

PT
CH

A
Sc

or
e

Data Savings
Off
On

Fig. 5: Daily reCAPTCHA v3 scores across browsers with data
savings enabled and disabled (whiskers extended to 5% and 95%
of dataset).

leave further analysis of the effect DSBs have on reCAPTCHA
scores over long time periods to future work.

We find a clear dichotomy in the reCAPTCHA scores
returned for browsers with data savings mode enabled and
disabled. Our results demonstrate that a user’s browsing ex-
perience can vary drastically each time they use a DSB.
According to Google’s reCAPTCHA v3 guidelines [18], web
site administrators should use scores below 0.5 as a baseline
for bot activity. Assuming most web sites follow this baseline,
users of DSBs will experience more captchas, rate-limiting,
and even IP bans when data-saving mode is enabled.

As multiple users share the same DSB proxy, the reputation
for a proxy depends on the aggregated behavior of all its users.
Hence, it is possible that malicious users could negatively
impact the web browsing experience of the benign majority.
To evaluate this scenario, we conducted a proof-of-concept
attack against Puffin. Using one device which we designated as
the “attacker”, we performed minor bot-like activity on a web
site protected by a popular anti-bot service: after requesting
the site’s home page multiple times in a short time window,
the attacker was shown a captcha. When visiting the same
site through Puffin on the “victim” device (same smartphone
model), it would immediately receive a captcha lasting for a
short time frame (approximately 5 minutes). We empirically
determined that this effect is only present if the victim and
attacker (i) share the same proxy IP address, (ii) have the
same device model, and (iii) visit the same web site in close
temporal proximity. We determined the probability of a user
meeting these criteria during our testing period is small enough
to ensure no users were effected by our experiment. However,
in the unlikely event that these criteria were met, the resulting
effect would be a limited inconvenience to any users of the
web site, who would only need to solve a captcha to continue
browsing. While in practice attackers could trivially increase
the volume of requests and significantly magnify the impact
of the attack (e.g., using multiple popular devices), we did not
attempt/explore this for ethical reasons.

D. Data Saving Mode Security Degradation

We found that proxy servers supporting DSBs typically do
not provide the same level of security as traditional mobile

Months Maximum
Browser Outdated Software Servers Outdated CVEs CVE Score Example CVEs
Yandex nginx v1.8.1, v1.12.2, v1.14.2 14 28.3 3 7.8 CVE-2018-16843, CVE-2018-16844
UC Browser nginx v1.10.1, v1.12.2, TwistedWeb v10.2.0 5 57.7 2.7 7.8 CVE-2018-16843, CVE-2018-16844
UC Mini nginx v1.10.1, v1.12.2, TwistedWeb v10.2.0 4 57.7 2.7 7.8 CVE-2018-16843, CVE-2018-16844
Puffin Free lighttp v1.4.35 4 68 1 5 CVE-2015-3200
Puffin Premium lighttp v1.4.35 4 68 1 5 CVE-2015-3200
Opera Browser nginx v1.10.2, v1.12.2 2 32.5 3.5 7.8 CVE-2018-16843, CVE-2018-16844

TABLE V: Information about outdated software running on DSB gateway proxy servers. Numbers averaged across servers of each DSB.

Savings On Savings Off ∆
Browser Strong Weak Strong Weak Strong Weak
Chrome 9 9 9 7 0 +2
Opera Browser 4 9 9 7 -5 +2
Opera Mini (High) 4 9 9 7 -5 +2
Opera Mini (Extreme) 3 10 9 7 -6 +3
Puffin Free 6 7 N/A N/A N/A N/A
Puffin Premium 6 7 N/A N/A N/A N/A

TABLE VI: Strong and weak cipher suites offered by DSBs.

browsers. Thus, when users enable the data-saving mode of
a browser, they are immediately putting themselves at greater
risk for the benefit of mobile data savings. In this section
we discuss how the proxies that support DSBs affect two
foundational aspects of TLS. First, we observe that proxies
support a different and typically less secure set of cipher suites.
Second, we highlight grave differences in handling certificate
errors with data-saving enabled vs. disabled.

Supported Cipher Suites. Next we determine the extent of
security degradation in each browser when data-saving modes
are enabled. An interesting finding relates to the number of
cipher suites offered by each DSB and its corresponding proxy
infrastructure. Table VI lists the number of strong and weak
cipher suites (as categorized by SSL Labs) offered by each
browser with data-savings enabled and disabled. All browsers
that support proxying HTTPS content introduce additional
weak cipher suites while the majority also reduce the number
of strong cipher suites. This choice of cipher suites puts the
user at unnecessary risk as a variety of known attacks (e.g.,
POODLE [49]) can be launched against the known weak
suites. Furthermore, while the Opera and Opera Mini browsers
with disabled data savings support the more modern TLS
version 1.3, their supporting proxy infrastructure does not.

SSL certificate error handling. The results of our ex-
periments with respect to handling SSL certificate errors are
summarized in Table VII. Recall that in this experiment we
visited a number of sites where each site features a specific
defect in the provided SSL certificate (e.g., expired, self-
signed, etc.). We visited each site twice, once with data
savings enabled, and once with data savings disabled. If a
DSB correctly prevents the user from visiting a site with an
erroneous certificate or displays a warning page, we mark the
corresponding cell with a 3 symbol. Further, we represent
browsers which allow users to visit web sites with certificate
errors but present them with a warning pop-up with a “!”
symbol. Any browser that does not alert users of certificate
errors on a page they are attempting to visit is labeled with
a 7 symbol. Lastly, any behavior that does not fall into the

above three categories is labeled with an ”N/A”. For example,
Opera Mini with data savings mode disabled prevents users
from visiting sites providing a certificate signed by GeoTrust,
but does not alert users of any errors. Although this behavior
prevents immediate access to potentially harmful web sites, it
leads to user confusion. We mark Puffin browsers with a “*”
because they do not allow users to disable proxying.

First, we find that for the majority of errors, Opera and
Puffin allow access and only show a warning, as opposed
to Chrome that prevents access. As prior work has reported
significant click-through rates when users are presented with
SSL-related browser warnings [21], this approach is problem-
atic. Opera Browser and Opera Mini in both data savings
modes (High and Extreme) allow users to visit pages with
certificates signed using the SHA1 hashing algorithm. Addi-
tionally, Opera Browser and Opera Mini in High data savings
mode allow users to visit sites where the certificate supplied
does not match the correct subdomain. We demonstrate this
vulnerability in both browsers in demo videos [11], [13]. This
could potentially allow related-domain attackers [26] to bypass
the cookie-integrity checks recently adopted by browsers that
rely on cookie prefixes [24]. In both cases, the user sees a
lock icon in the URL bar indicating their connection to the
web server is secure, when in reality it is not.

One of the most severe revelations resulting from this
experiment is that Opera browsers in data-saving mode accept
certificates from distrusted certificate authorities (CAs). A
CA is considered distrusted if it has its private signing keys
disclosed (e.g., SuperFish [20] which was never officially a
CA yet signed certificates for all websites for adware-related
reasons), or it has a known history of misissuing certificates
(e.g., GeoTrust and RapidSSL [64]). Opera Browser and Opera
Mini in High data savings mode accept the former, while
all variants of Opera accept the latter. We demonstrate this
attack against Opera Browser in a demo video [10]. Disabling
data savings mode in Opera Browser removes the vulnerability
and properly alerts users to the error. However, Opera Mini
simply fails to load the potentially dangerous web page and
does not alert the user as to the reason why. Accepting these
untrusted certificates leaves users vulnerable to severe man-
in-the-middle attacks against arbitrary websites.

We successfully executed this attack using a certificate
generated for a domain under our control and signed with the
SuperFish private key. Although creating the fake certificate is
straightforward, to execute this attack, the adversary must also
MITM connections in front of the Opera endpoint servers, e.g.,
by poisoning their DNS cache or performing selective BGP

expired wrong.host self-signed untrusted-root sha1-intermediate SuperFish GeoTrust
Data Savings On Off On Off On Off On Off On Off On Off On Off
Chrome 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Opera Browser ! ! 7 ! ! ! ! ! 7 ! 7 ! 7 !
Opera Mini (High) ! ! 7 ! ! ! ! ! 7 ! 7 ! 7 N/A
Opera Mini (Extreme) ! ! ! ! ! ! ! ! 7 ! N/A ! 7 N/A
Puffin Web Browser* ! ! ! ! ! ! ! ! ! ! ! ! 7 7
Puffin Premium* ! ! ! ! ! ! ! ! ! ! ! ! 7 7

Prevent access: 3, Allow access: 7, Warn but allow access: !
TABLE VII: Differences between how DSBs handle certificate errors depending on whether the data saving mode is enabled or not.

Fig. 6: Opera behavior when visiting a site with a SuperFish signed
certificate with data savings disabled (left) and enabled (right).

hijacking. Prior work has demonstrated the effectiveness of
DNS cache poisoning attacks [40], while security companies
have recently issued reports about major DNS hijacking cam-
paigns [2], [5]. We simulate DNS cache poisoning by modify-
ing the authoritative DNS server for our domain to direct traffic
to our “attacker” machine. This machine runs MITMProxy
[8] and presents the SuperFish signed certificate to Opera’s
proxy servers. Using Opera Browser and Opera Mini in High
data savings mode, we visit our domain and receive the
page contents with a lock icon in the URL bar. Figure 6
shows how the same browser detects the bad Superfish-signed
certificate when the data-saving mode is disabled yet accepts
the certificate when it is enabled. We theorize that, in order to
bootstrap the root CA store of their proxies, Opera extracted
trusted CAs from real devices including the Lenovo laptops
that were infected with Superfish [20]. Even though these root
certificates are no longer trusted, this removal decision appears
to not be reflected in Opera’s root CA store.

E. Content Manipulation and Leakage

Proxy servers are at liberty to modify the actual HTML
content of a web site, as well as any meta information in the
HTTP responses used to transmit that content.

Modifications to the HTTP transport. Alarmingly, our
experiments reveal that DSB proxy servers drop a number
of headers in HTTP responses, which renders any security
measures that rely on these headers moot. For example, the
proxies for both Opera Mini in high data savings as well
as Opera Browser do not forward the X-Frame-Options
HTTP header. As this header is the predominant defense
against clickjacking, dropping the header exposes web sites
and their users to these attacks. We demonstrate this vul-
nerability in both browsers with demo videos [12] [14].
Similarly, Opera’s proxy servers drop the X-CSRF-Token
HTTP header, with the same effect of nullifying a class of
CSRF defense mechanisms. Opera’s proxies furthermore drop

the X-Content-Type-Options, X-WebKit-CSP, and
X-Permitted-Cross-Domain-Policies headers and
custom headers unique to a particular website.

Unfortunately, our experiments also identified a series of
modifications in HTTP requests. Particularly, UC Browser, UC
Mini, Opera, and Opera Mini in high data savings mode collect
a slew of potentially sensitive information (i.e., IMEI, phone
number, device serial number, and the Android advertising
ID) and transmit that information in HTTP headers to their
proxy servers. We note that the Android advertising ID is not
considered privacy sensitive per se and users are at liberty to
reset this ID at any time. However, Opera additionally includes
a so-called OperaID header that includes a persistent identifier
in all its requests. This behavior neglects the Google Play Store
guidelines, as it allows Opera to re-identify users even after
they reset their advertising IDs.

Modifications to HTML content. Manipulating the HTML
content would invariably erode users’ trust. Hence, as ex-
pected, we did not observe any clearly malicious modifications
to HTML content. Specifically, we observed modifications to
a web site’s content for Opera Mini in high data savings
mode and Opera Browser, where the proxy server injects CSS
content to block advertisements. To this end, the injected CSS
styles hide DOM elements originating from well-known ad-
vertising exchanges. As hiding advertisements improves users’
experience, we ascribe benign intent to these modifications.

Leakage. We performed the URL leakage experiment for 17
weeks, the page content leakage experiment for 8 weeks, and
the credential leakage experiment for 5 weeks. During these
experiments we did not record any instance of a third party
attempting to revisit any page we visited through the browsers
or use any of the information we leaked. While this result is
unsurprising, we felt it important to include so as to provide
a full picture of the DSB ecosystem.

V. DISCUSSION AND FUTURE WORK

In this section we discuss our main findings, their impli-
cations, as well as potential future research directions in the
space of data-saving browsers.

Savings vs Security. With DSBs occupying a considerable
portion of the market share of mobile browsers, it is critical
to bring attention to the security implications of enabling data
savings. Our study showed that the majority of data savings
only occur if the user is browsing (Section IV-A); when
consuming streaming content, most browsers cannot offer any
savings and, in fact, seven out of the ten evaluated actually
consume more data when streaming videos, rather than less.

At the same time, even though we found no evidence
that data-savings browsers act maliciously (Section IV-E),
these browsers expose their users to substantial security risks.
We observed the usage of outdated software on proxying
servers which could potentially lead to attackers achieving
full MITM capabilities for these browsers (Section IV-B), as
well as the use of weak cryptographic ciphers and issues with
the verification process of TLS certificates (Section IV-D).
Among others, we discovered that all users of the Opera
Browser and Opera Mini in High-data-savings mode were
vulnerable (prior to our disclosure) to SuperFish attacks where
attackers could straightforwardly generate certificates with the
leaked SuperFish private key, and successfully MITM all TLS-
protected connections of these users. Orthogonally to these
issues, we discovered that the “co-location” of traffic from
benign and malicious users (i.e., the fact that everyone’s traffic
flows through the same DSB servers) means that benign users
will be shown more CAPTCHAs when using data-savings
browsers, compared to browsing the web through traditional
means (Section IV-C).

Data-savings design. As HTTPS adoption is steadily in-
creasing across the Web, with recent statistics reporting ∼69%
in the top 150K websites [17], this complicates the offering
of secure data savings. During our analysis we observed three
unique ways of offering data savings. Some browsers (such
as Yandex and UC Mini) completely “excuse” themselves
from HTTPS connections thereby protecting their end-to-end
nature but effectively offering near-zero savings in an HTTPS-
by-default web. Other browsers (such as Chrome and Opera
Browser) perform TLS termination in order to be able to offer
data-savings over TLS-protected connections. This creates the
potential for all the issues we discovered in this paper. Offering
a data-savings mode through TLS interception means that the
browser is, in effect, running dual TLS stacks. One at the
device itself (when data-savings is turned off) and one at the
proxy servers of the browser vendors. Keeping these stacks
in sync is clearly complicated and can give rise to subtle
bugs (such as forgetting to remove the SuperFish certificate
from the proxy-side, root CA store) which can remain hidden
for long periods of time, exposing users to MITM attacks.
Finally, we observed a class of DSBs (such as Puffin) where
the real browser is situated on remote servers and the browser
running on the user’s device is merely a “terminal” which
renders the received server-side content and relays user actions
(e.g., clicking a link) to the real server-side browser. This
architecture bypasses the issues associated with dual TLS
stacks. However, similarly to other TLS-intercepting browsers,
user privacy is diminished as these browser vendors get access
to users’ full browsing history, cookies, and credentials.

We argue that there is a fourth design option available
that can result in data savings with reduced privacy concerns.
Namely, since multimedia content (such as images and videos)
are major culprits of increased data usage, we argue that
a mobile browser can selectively use TLS termination and
content rewriting just for these types of content. Specifically,
the mobile browser can fetch the main HTML content of

a webpage without any TLS termination and, at the client
side, decide which subsequent resources must be fetched over
content-rewriting proxies. This effectively reduces the impact
of a misconfigured/compromised content-rewriting server to
multimedia content, instead of the entirety of content that is
currently exposed. We leave the design and evaluation of such
a data-saving browser to future work.

Understanding user perceptions. While the allure of
saving data likely plays an important role in the decision-
making process of users when choosing a browser, a study that
explores how users perceive DSBs could provide important
insights. The transparent process of data-saving and the tech-
nical complexities of TLS interception, obfuscate the privacy
and security implications of sensitive communications being
in a readable form on not-explicitly-trusted or potentially-
vulnerable proxy servers. It is likely that if end users would
understand the methods through which data-savings are of-
fered, that they would stop utilizing these types of browsers.

Similarly, because of the arbitrary geographical location
of the content-rewriting servers, plaintext/encrypted data may
suddenly flow through unexpected and unfavorable regions
with different privacy laws and stances towards user data.
In February 2019, US Senators asked the DHS to investigate
mobile browsers and VPNs that relay the traffic of government
employees to countries of “national security concern” [53].
We, again, expect that if government employees are made
aware of the exact methods through which data-savings are
achieved, they may very well switch to different browsers.

Responsible disclosure. We have reached out to the af-
fected browsers and responsibly disclosed to them our find-
ings. To date, we have received responses from Opera regard-
ing the SuperFish certificate validation errors and the dropping
of security sensitive HTTP headers by proxy servers. Opera
has responded to our report and immediately patched the
vulnerabilities. We are currently in the process of following
up with the remaining vendors to ensure they are aware of our
findings and to understand how they intend to address them.

VI. RELATED WORK

To the best of our knowledge, this paper presents the
first security analysis of data-saving browsers, highlighting
their differences compared to traditional browsers and how
these differences can lead to weakened security and degraded
user experience. Here, we briefly discuss prior work on TLS
interception, mobile browsers, and rogue network relays.

TLS Interception. In 2017, Durumeric et al. proposed a
technique for identifying the presence of HTTPS interception
by inspecting the TLS handshake of browsers and identifying
discrepancies between these handshakes and the declared user
agent [32]. Using multiple vantage points (i.e., Cloudflare
servers and e-commerce sites) the authors measured the phe-
nomenon of HTTPS interception and traced it back to specific
middleboxes and antivirus software. De Carnavalet and Man-
nan investigated the client-side TLS interception of antivirus
and parental-control applications, finding vulnerabilities that
included the acceptance of self-signed and revoked certificates,

enabling MITM attackers to hijack connections to this TLS-
intercepting software that they could not have hijacked if
that software was absent [30]. Waked et al. analyzed the
TLS interception of six network appliances finding similar
certificate-validation and poor key-storage issues [63].

Given all the issues with TLS interception, the US-Cert has
published an alert (TA17-075A) titled “HTTPS Interception
Weakens TLS Security” where they encourage organizations
to verify that they need HTTPS-interception capabilities and
“ensure their HTTPS inspection products are performing cor-
rect transport layer security (TLS) certificate validation” [61].

Inspired by the issues introduced by TLS-intercepting soft-
ware, Lee et al. recently proposed an alternative, middlebox-
aware TLS protocol which allows clients to authenticate
middleboxes and servers to be aware of the presence of a
middlebox between them and clients [41]. Note that, unlike
middleboxes, antivirus software, and parental-control applica-
tions, data-savings browsers control both the client-side (i.e.,
the browser) as well as the content-rewriting servers (concep-
tually similar to a middlebox). Our work therefore confirms
the difficulty of securely intercepting TLS connections even
with the increased control afforded by data-saving browsers.

Mobile Browser Security. When handheld electronic de-
vices started including browsers in their software, researchers
realized that these browsers had to make certain design de-
cisions that made them uniquely vulnerable to specific types
of attacks. Niu et al. [50] and Amrutkar et al. [22] showed
how the limited screen real-estate of handheld devices could
be abused for highly-effective phishing attacks [36]. Luo et al.
performed a longitudinal analysis of Android mobile browsers
finding that, in terms of UI vulnerabilities, mobile browsers
are becoming less secure over time [45] and are slower in
supporting standard security mechanisms (such as CSP and
HSTS) compared to desktop browsers [44]. Tendulkar et al.
investigated how “cloud browsers” (such as Puffin) can be
abused for free computation but did not investigate the security
and privacy impact of using these browsers [59].

Orthogonal to the ability of mobile browsers to enforce
security mechanisms, Mendoza et al. quantified the consistent
use of security mechanism across desktop and mobile sites,
finding cases where the mobile versions of websites did not
employ the same mechanisms as the desktop versions and
could therefore be abused to attack users [48]. Previously,
Papadopoulos et al. [51] and Leung et al. [42] had com-
pared the privacy loss when accessing a web service over
a mobile browser or the corresponding mobile app. Kim
et al. demonstrated the privacy risks that users face due to
incorrect implementations of the Geolocation API in mobile
browsers [39]. Recent studies also measured the extent to
which web sites leverage APIs supported by modern browsers
for accessing smartphone sensor data, which can be used for
a plethora of different attacks [29], [46].

In this paper, we investigate a specific class of mobile
browsers that attempt to offer data-savings to their users and
present a comprehensive exploration of the security issues that
are introduced when users activate this data-savings mode.

Rogue Network Relays. Even though the average user
connects to web servers directly, there exist a number of
scenarios where users willingly proxy their traffic through
various servers, as way of evading censorship, preserving
anonymity, and accessing geo-fenced services. Prior work has
discovered that a fraction of these proxying systems modify
the content that flows through them with security and privacy
consequences. In 2014, Winter et al. proposed a system that
used honeytokens to discover malicious Tor exit nodes which
capitalized on unencrypted connections to collect credentials
of Tor users [65]. Sivakorn et al. showed how malicious
operators of Tor exit nodes could collect HTTP cookies from
unencrypted communications and then later abuse them for
session hijacking attacks [55]. Tsirantonakis et al. investigated
the content-modification performed by open proxies discov-
ering that 5.15% of them perform some type of malicious
modification [60]. Chung et al. utilize an HTTP(S)-proxying
service that uses real user devices to measure the level of
content-integrity violations across the web finding that up to
4.8% of the proxying nodes in their experiment were subject
to some form of content-integrity violation [27].

In contrast to past work, even though we utilized a large
number of honeytoken-based experiments, we did not discover
any signs of malicious content modification or data leakage.
This is an intuitive finding since the browser vendors behind
data-saving browsers are legitimate entities which are highly
unlikely to voluntarily engage in this type of behavior.

VII. CONCLUSION

In a world where a large portion of web browsing is
conducted on smartphones on-the-go, and data plans present
a substantial cost for most users, data-saving browsers pose
an alluring option. In our study we set forth to explore, and
ultimately demonstrate, that enabling the data-saving mode
significantly impacts a user’s security posture. Our experi-
mental analysis revealed a series of vulnerabilities that are
introduced by data-saving modes in major browsers, and which
constitute a significant privacy and security threat to hundreds
of millions of users. Our findings highlight the immensity of
the trade-off that users are faced with, as the obvious financial
benefits of using DSBs are overshadowed by weakened TLS
encryption, faulty certificate inspection, lack of support for
security mechanisms, traffic flowing through proxy servers
running outdated software, and users being labeled as potential
bots. Our study sheds light on an important security threat that
hundreds of millions of users are currently facing, and we hope
that our findings help users make more informed decisions
during their mobile browser selection process.

Acknowledgements: We thank our shepherd Emily Stark and
the anonymous reviewers for their helpful feedback. This work
was supported by the Office of Naval Research (ONR) under
grants N00014-17-1-2541 and N00014-19-1-2364, as well as
by the National Science Foundation (NSF) under grants CNS-
1617593, CNS-1813974, and CNS-1934597.

REFERENCES

[1] Andhook. https://github.com/asLody/AndHook.
[2] Ars technica - dhs: Multiple us gov domains hit in serious

dns hijacking wave. https://arstechnica.com/information-
technology/2019/01/multiple-us-gov-domains-hit-in-serious-dns-
hijacking-wave-dhs-warns/.

[3] Boringssl. https://github.com/google/boringssl.
[4] Chromium blog: Chrome lite pages - for a faster, leaner loading

experience. https://blog.chromium.org/2019/03/chrome-lite-pages-for-
faster-leaner.html.

[5] Cisco talos - dns hijacking abuses trust in core internet service. https:
//blog.talosintelligence.com/2019/04/seaturtle.html.

[6] Data savings and turbo mode. https://www.opera.com/turbo.
[7] Google recaptcha v3 - interpreting the score. https://developers.google.

com/recaptcha/docs/v3.
[8] Mitmproxy. https://mitmproxy.org/.
[9] Nmap. https://nmap.org.

[10] Opera browser superfish attack demo. https://vimeo.com/376471169/
3ce7f26104.

[11] Opera browser wrong host demo. https://vimeo.com/376667209/
c38449bb65.

[12] Opera browser x-frame-options demo. https://vimeo.com/376524398/
0d36db25cb.

[13] Opera mini wrong host certificate demo. https://vimeo.com/376667274/
8dae75351a.

[14] Opera mini x-frame-options demo. https://vimeo.com/376524711/
a0c9f78a93.

[15] Pew research center - use of smartphones and social media is common
across most emerging economies. https://www.pewresearch.org/internet/
2019/03/07/use-of-smartphones-and-social-media-is-common-across-
most-emerging-economies/.

[16] Polar proxy. https://www.netresec.com/?page=PolarProxy.
[17] Qualys SSL Labs - SSL Pulse. https://www.ssllabs.com/ssl-pulse/.
[18] recaptcha guidelines. https://developers.google.com/recaptcha/docs/v3.
[19] Statista -share of global mobile website traffic 2015-2019.

https://www.statista.com/statistics/277125/share-of-website-traffic-
coming-from-mobile-devices/.

[20] The Guardian - Lenovo accused of compromising user security
by installing adware on new PCs. https://www.theguardian.com/
technology/2015/feb/19/lenovo-accused-compromising-user-security-
installing-adware-pcs-superfish, 2015.

[21] Devdatta Akhawe and Adrienne Porter Felt. Alice in warningland:
A large-scale field study of browser security warning effectiveness.
In Proceedings of the 22nd USENIX Security Symposium (USENIX
Security), 2013.

[22] Chaitrali Amrutkar, Kapil Singh, Arunabh Verma, and Patrick Traynor.
VulnerableMe: Measuring systemic weaknesses in mobile browser se-
curity. In Proceedings of the International Conference on Information
Systems Security (ICISSP), 2012.

[23] Badssl - a memorable site for HTTPS misconfiguration. https://badssl.
com.

[24] Adam Barth and Mike West. Cookies: HTTP State Management
Mechanism. Internet-draft, Internet Engineering Task Force, 2019. Work
in Progress.

[25] Kevin Bock, Daven Patel, George Hughey, and Dave Levin. uncaptcha:
a low-resource defeat of recaptcha’s audio challenge. In Proceedings of
the 11th USENIX Workshop on Offensive Technologies (WOOT), 2017.

[26] Stefano Calzavara, Riccardo Focardi, Matus Nemec, Alvise Rabitti, and
Marco Squarcina. Postcards from the post-http world: Amplification of
https vulnerabilities in the web ecosystem. In Proceedings of the 40th
IEEE Symposium on Security and Privacy (IEEE S&P), 2019.

[27] Taejoong Chung, David Choffnes, and Alan Mislove. Tunneling for
transparency: A large-scale analysis of end-to-end violations in the
internet. In Proceedings of the 2016 Internet Measurement Conference
(ICM), 2016.

[28] Cam Cullen. Sandvine 2019 Mobile Internet Phenomena Re-
port. https://www.sandvine.com/press-releases/sandvine-releases-2019-
mobile-internet-phenomena-report, 2019.

[29] Anupam Das, Gunes Acar, Nikita Borisov, and Amogh Pradeep. The
web’s sixth sense: A study of scripts accessing smartphone sensors.
In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, 2018.

[30] Xavier de Carné de Carnavalet and Mohammad Mannan. Killed by
proxy: Analyzing client-end tls interception software. In Proceedings of
the 23rd Network and Distributed System Security Symposium (NDSS),
2016.

[31] Zakir Durumeric, David Adrian, Ariana Mirian, Michael Bailey, and
J Alex Halderman. A search engine backed by internet-wide scanning.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015.

[32] Zakir Durumeric, Zane Ma, Drew Springall, Richard Barnes, Nick
Sullivan, Elie Bursztein, Michael Bailey, J Alex Halderman, and Vern
Paxson. The security impact of https interception. In Proceedings of
the 24th Network and Distributed System Security Symposium (NDSS),
2017.

[33] Zakir Durumeric, Eric Wustrow, and J Alex Halderman. Zmap: Fast
internet-wide scanning and its security applications. In Proceedings of
the 22nd USENIX Security Symposium (USENIX Security), 2013.

[34] Qilin Fan, Hao Yin, Geyong Min, Po Yang, Yan Luo, Yongqiang Lyu,
Haojun Huang, and Libo Jiao. Video delivery networks: Challenges,
solutions and future directions. Computers & Electrical Engineering,
66:332–341, 2018.

[35] Adrienne Porter Felt, Richard Barnes, April King, Chris Palmer, Chris
Bentzel, and Parisa Tabriz. Measuring HTTPS adoption on the web.
In Proceedings of the 26th USENIX Security Symposium (USENIX
Security), 2017.

[36] Adrienne Porter Felt and David Wagner. Phishing on mobile devices.
In Proceedings of the Web 2.0 Security and Privacy Workshop (W2SP),
2011.

[37] Google fi - plans benefits & details. https://fi.google.com/about/plans/.
[38] Muhammad Ikram, Narseo Vallina-Rodriguez, Suranga Seneviratne,

Mohamed Ali Kaafar, and Vern Paxson. An analysis of the privacy and
security risks of android vpn permission-enabled apps. In Proceedings
of the Internet Measurement Conference (IMC), 2016.

[39] Hyungsub Kim, Sangho Lee, and Jong Kim. Exploring and mitigating
privacy threats of html5 geolocation api. In Proceedings of the 30th
Annual Computer Security Applications Conference (ACSAC), 2014.

[40] Klein, Amit and Shulman, Haya and Waidner, Michael. Internet-wide
study of dns cache injections. In Proceedings of the IEEE INFOCOM
Conference on Computer Communications, 2017.

[41] Hyunwoo Lee, Zach Smith, Junghwan Lim, Gyeongjae Choi, Selin
Chun, Taejoong Chung, and Ted Taekyoung Kwon. matls: How to
make tls middlebox-aware? In Proceedings of the 26th Network and
Distributed System Security Symposium (NDSS), 2019.

[42] Christophe Leung, Jingjing Ren, David Choffnes, and Christo Wilson.
Should you use the app for that?: Comparing the privacy implications
of app-and web-based online services. In Proceedings of the Internet
Measurement Conference (IMC), 2016.

[43] Christos Liaskos, Vasileios Kotronis, and Xenofontas Dimitropoulos. A
novel framework for modeling and mitigating distributed link flooding
attacks. In Proceedings of the 35th Annual IEEE International Confer-
ence on Computer Communications (INFOCOM), 2016.

[44] Meng Luo, Pierre Laperdrix, Nima Honarmand, and Nick Nikiforakis.
Time does not heal all wounds:a longitudinal analysis of security-
mechanism support in mobile browsers. In Proceedings of the 26th
Network and Distributed System Security Symposium (NDSS), 2019.

[45] Meng Luo, Oleksii Starov, Nima Honarmand, and Nick Nikiforakis.
Hindsight: Understanding the Evolution of UI Vulnerabilities in Mobile
Browsers. In Proceedings of the 24th ACM Conference on Computer
and Communications Security (CCS), 2017.

[46] Francesco Marcantoni, Michalis Diamantaris, Sotiris Ioannidis, and
Jason Polakis. A large-scale study on the risks of the html5 webapi
for mobile sensor-based attacks. In Proceedings of the Web Conference
(WWW), 2019.

[47] Arunesh Mathur, Brent Schlotfeldt, and Marshini Chetty. A mixed-
methods study of mobile users’ data usage practices in south africa.
In Proceedings of the 2015 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, 2015.

[48] Abner Mendoza, Phakpoom Chinprutthiwong, and Guofei Gu. Uncov-
ering HTTP Header Inconsistencies and the Impact on Desktop/Mobile
Websites. In Proceedings of the Web Conference (WWW), 2018.

[49] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This poodle bites:
exploiting the ssl 3.0 fallback. Security Advisory, 2014.

[50] Yuan Niu, Francis Hsu, and Hao Chen. iPhish: Phishing Vulnerabilities
on Consumer Electronics. In Usability, Psychology, and Security
(UPSEC), 2008.

[51] Elias P Papadopoulos, Michalis Diamantaris, Panagiotis Papadopoulos,
Thanasis Petsas, Sotiris Ioannidis, and Evangelos P Markatos. The long-
standing privacy debate: Mobile websites vs mobile apps. In Proceedings
of the Web Conference (WWW), 2017.

[52] Requests: HTTP for humans. https://2.python-requests.org/en/master/.
[53] Marco Rubio and Ron Wyden. Rubio, Wyden Ask Homeland

Security To Investigate National Security Risks Of Foreign VPN
Apps. https://www.rubio.senate.gov/public/index.cfm/2019/2/rubio-
wyden-ask-homeland-security-to-investigate-national-security-risks-
of-foreign-vpn-apps, 2019.

[54] SimilarTech. Captcha Technologies Market Share and Web Usage
Statistics. https://www.similartech.com/categories/captcha.

[55] Suphannee Sivakorn, Iasonas Polakis, and Angelos D Keromytis. The
cracked cookie jar: Http cookie hijacking and the exposure of private
information. In Proceedings of the 37th IEEE Symposium on Security
and Privacy (IEEE S&P), 2016.

[56] Suphannee Sivakorn, Iasonas Polakis, and Angelos D Keromytis. I am
robot:(deep) learning to break semantic image captchas. In Proceedings
of the 1st IEEE European Symposium on Security and Privacy (IEEE
EuroS&P), 2016.

[57] Microsoft reads your skype chat messages. https://yro.slashdot.org/story/
13/05/14/1516247/microsoft-reads-your-skype-chat-messages.

[58] StatCounter. Browser market share worldwide. http://gs.statcounter.com/
browser-market-share, 2019.

[59] Vasant Tendulkar, Ryan Snyder, Joe Pletcher, Kevin Butler, Ashwin
Shashidharan, and William Enck. Abusing cloud-based browsers for
fun and profit. In Proceedings of the 28th Annual Computer Security
Applications Conference (ACSAC), 2012.

[60] Giorgos Tsirantonakis, Panagiotis Ilia, Sotiris Ioannidis, Elias Athana-
sopoulos, and Michalis Polychronakis. A large-scale analysis of content

modification by open http proxies. In Proceedings of the 25th Network
and Distributed System Security Symposium (NDSS), 2018.

[61] US CERT. Alert (TA17-075A): HTTPS Interception Weakens TLS
Security. https://www.us-cert.gov/ncas/alerts/TA17-075A.

[62] Luis Von Ahn, Manuel Blum, Nicholas J Hopper, and John Langford.
Captcha: Using hard ai problems for security. In International Con-
ference on the Theory and Applications of Cryptographic Techniques,
2003.

[63] Louis Waked, Mohammad Mannan, and Amr Youssef. To intercept
or not to intercept: Analyzing tls interception in network appliances.
In Proceedings of the 2018 on Asia Conference on Computer and
Communications Security (ASIACCS), 2018.

[64] Kathleen Wilson. Distrust of symantec tls certificates.
https://blog.mozilla.org/security/2018/03/12/distrust-symantec-tls-
certificates/, March 2018.

[65] Philipp Winter, Richard Köwer, Martin Mulazzani, Markus Huber,
Sebastian Schrittwieser, Stefan Lindskog, and Edgar Weippl. Spoiled
onions: Exposing malicious tor exit relays. In International Symposium
on Privacy Enhancing Technologies Symposium (PETS), 2014.

[66] Guixin Ye, Zhanyong Tang, Dingyi Fang, Zhanxing Zhu, Yansong
Feng, Pengfei Xu, Xiaojiang Chen, and Zheng Wang. Yet another text
captcha solver: A generative adversarial network based approach. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018.

[67] Huan Zhou, Hui Wang, Xiuhua Li, and Victor CM Leung. A survey on
mobile data offloading technologies. IEEE Access, 6:5101–5111, 2018.

