HProxy: Client-side detection of SSL stripping
attacks

Nick Nikiforakis, Yves Younan, and Wouter Joosen

IBBT-DistriNet
Katholieke Universiteit Leuven
Celestijnenlaan 200A B3001
Leuven, Belgium
{nick.nikiforakis, yves.younan, wouter.joosen}@cs.kuleuven.be

Abstract. In today’s world wide web hundreds of thousands of com-
panies use SSL to protect their customers’ transactions from potential
eavesdroppers. Recently, a new attack against the common usage of SSL
surfaced, SSL stripping. The attack is based on the fact that users al-
most never request secure pages explicitly but rather rely on the servers,
to redirect them to the appropriate secure version of a particular web-
site. An attacker, after becoming man-in-the-middle can suppress such
messages and provide the user with “stripped” versions of the requested
website forcing him to communicate over an insecure channel. In this
paper, we analyze the ways that SSL stripping can be used by attack-
ers and present a countermeasure against such attacks. We leverage the
browser’s history to create a security profile for each visited website.
Each profile contains information about the exact use of SSL at each
website and all future connections to that site are validated against it.
We show that SSL stripping attacks can be prevented with acceptable
overhead and without support from web servers or trusted third parties.

Key words: MITM Detection, SSL Stripping, Browser Security

1 Introduction

In 1994 Netscape Communications released the first complete Secure Sockets
Library (SSL) which allowed applications to exchange messages securely over the
Internet [20]. This library uses cryptographic algorithms to encrypt and decrypt
messages in order to prevent the logging and tampering of these messages by
potential eavesdroppers. Today SSL is considered a requirement for companies
who handle sensitive user data, such as bank account credentials and credit card
numbers. According to a study by Netcraft[16], in January of 2009 the number of
valid SSL certificates on the Internet reached one million, recording an average
growth of 18,000 certificates per month. Due to its widespread usage, attackers
have developed several attacks, mainly focusing in the forging of invalid SSL
certificates and hoping that users will accept them.

Recently however a new attack has surfaced [13]. This technique is not based
on any specific programming error but rather on the whole architecture and usage

2 N. Nikiforakis, Y. Younan and W. Joosen

of secure webpages. It is based on the observation that most users never explicitly
request SSL protected websites, in the sense that they never type the https
prefix in their browsers. The transition from cleartext pages to encrypted ones
is done usually either through web server redirects, secure links, or secure target
links of HTML forms. If an attacker can launch a man-in-the-middle (MITM)
attack, he can suppress all such transitions by “stripping” these transitional
links from the cleartext HTTP protocol or HTML webpages before forwarding
these messages/webpages to the unsuspecting client. Due to stripping of all SSL
information, all data that would originally be encrypted are now sent as cleartext
by the user’s browser providing the attacker with sensitive data such as user
credentials to email accounts, bank accounts and credit card numbers used in
online transactions.

In this paper, we explore the idea of using the browser’s history as a detection
mechanism. We design a client-side proxy which creates a unique profile for each
secure website visited by the user. This profile contains information about the
specific use of SSL in that website. Using this profile and a set of detection
rules, our system can identify when the page has been maliciously altered by a
MITM and block the connection with the attacker while notifying the user of an
attacker’s presence on the network. Our approach does not require server-side
cooperation and it does not rely on third-party services.

The main contributions of this paper are:

— Analysis and extension of a new class of web attacks
— Development of a generic detection ruleset for potential attack vectors

— Implementation of a client-side proxy which protects end-users from such
attacks

The rest of this paper is structured as follows. In Section 2, we describe
how SSL stripping attacks work followed by the reasons which make these at-
tacks widely effective in Section 3. In Section 4 we present the architecture and
workings of HProxy. We discuss some difficulties and how we overcame them in
Section 5. In Section 6 we present the evaluation of our approach followed by
some implementation details in Section 7. Section 8 discusses the related work
and we conclude in Section 9.

2 Anatomy of SSL stripping attacks

Once an attacker becomes MITM on a network, he can modify HT' TP messages
and HTML elements in order to trick the user’s browser into establishing un-
encrypted connections. In the following two scenarios we present two successful
attacks based on redirect suppression and target form re-writing. The first at-
tack exploits HT'TP protocol messages and the second attack rewrites parts of
a cleartext HTML webpage.

HProxy: Client-side detection of SSL stripping attacks 3

2.1 Redirect Suppression

1. The attacker launches a successful MITM attack against a wireless network
becoming the network’s gateway. From this point on, all requests and re-
sponses from any host on the wireless network are inspected and potentially
modified by him.

2. An unsuspecting user from this wireless network uses his browser and types
in the URL bar, mybank.com. The browser crafts the appropriate HTTP
message and forwards the message to the network’s gateway.

3. The attacker inspects the message and realizes that the user is about to
start a transaction with mybank.com. He forwards the message to MyBank’s
webserver.

4. mybank.com protects their entire website using SSL thus, the webserver re-
sponds with a 301 (Moved Message) to https://www.mybank. com.

5. The attacker intercepts the move message, and instead of forwarding it to the
user, he establishes a secure connection with MyBank and after decrypting
the resulting HTML, he forwards that to the user.

6. The user’s browser receives cleartext HTML, as a response to his request and
renders it. What the user now sees is an unencrypted version of MyBank’s
login page. The only thing that is missing is a subtle lock icon, which would
be otherwise located somewhere on the browser window.

7. From this point on, all user-data are transmitted as cleartext to the attacker,
where he tunnels them through his own encrypted connection. This results
in completely functional but unencrypted web sessions.

2.2 Target form re-writing

This attack is quite similar to the redirect suppression attack except for a signif-
icant detail. Target form re-writing is an attack against websites which operate
mainly over HTTP and they only protect parts of their webpages, such as a
login form and any subsequent pages for logged-in users. The way this is con-
structed in HTML is that while the main page is transfered over HTTP, the
target URL of a specific form has an HT'TPS prefix. When the user clicks the
“submit” button, the browser recognizes the secure protocol and attempts to
establish an SSL connection with the target web server. This is disastrous for
an attacker because, even though he controls all local network connections, he
has no realistic way of presenting a valid SSL certificate for the secure hand-
shake of the requested web server. The attacker thus, will have to present a
self-signed certificate resulting in multiple warnings which the user must ac-
cept before proceeding with the connection. In order to avoid this pitfall, the
attacker strips all secure form links and replaces them with cleartext versions.
So, a form with a target of https://www.example.com/login.php becomes
http://www.example.com/login.php (note the missing S from the protocol).
The browser has no way of knowing that the original link had a secure target and
thus sends the user’s credentials over an unencrypted channel. In the same way
as before, the attacker uses these credentials in his own valid SSL connection
and later forwards to the user the resulting HTML page.

4 N. Nikiforakis, Y. Younan and W. Joosen

3 Effectiveness of the attack

In this section we would like to stress the severity of the SSL attacks described
in Section 2. We argue that the two main reasons which make SSL stripping
such an effective attack are: a) the wide applicability of it in modern networks
and b) the way that feedback works on browser software.

3.1 Applicability

When eavesdropping attacks were first introduced, they targeted hubbed net-
works since hubs transmit all packets to all connected hosts, leaving each host
to choose the packets that are addressed for itself and disregard the rest. The
attacker simply configured his network card to read all packets (promiscuous
mode) and had immediate access to all the information coming in and out of
the hubbed network. Once hubs started being replaced by switches, this attack
was no longer feasible since switches forwarded packets only to the hosts that
were intended to receive them (using their MAC addresses as a filter). Attack-
ers had to resort to helper techniques (such as ARP flooding, which filled-up
the switch’s memory forcing it to start transmitting everything to everyone to
keep the network functioning) in order for their eavesdropping attacks to be
effective [15].

Today however, due to the widespread use of wireless network connections,
attackers have access to hundreds of thousands of wireless networks ranging from
home and hotel networks to airport and business networks. Wireless networks are
by definition hubbed networks since the transport medium is “air”. Even secure
wireless networks (WEP/WPA2) are susceptible to MITM attacks as long as
the attacker can find the encryption key (trivial for WEP [25] not so trivial for
WPA2).

The ramifications become even greater when we consider that wireless net-
works are not restricted to laptops anymore due to the market penetration of
hand held devices which use them to connect to the Internet. More and more peo-
ple use these kind of devices to perform sensitive operations from public wireless
networks without suspecting that a potential attacker could be eavesdropping
their transactions.

3.2 Software feedback

The second main reason that makes this attack effective is that it doesn’t produce
negative feedback. Computer users have been unconsciously trained for years
that the absence of warning messages and popups means that all operations were
successful and nothing unexpected happened. This holds true also for security
critical operations where users trust that a webpage is secure as long as the
browser remains “silent”.

In the scenario where an attacker tries to present to a web browser a self-
signed, expired or otherwise illegal certificate, the browser presents a number of
dialogues to the user which inform him of the problems and advise him not to

HProxy: Client-side detection of SSL stripping attacks 5

proceed with his request. Modern browsers (such as Firefox) have the user click
many times on a number of different dialogues before allowing him to proceed.
Many users, understand that it is best to trust their browser’s warnings, espe-
cially if they are working from an unfamiliar network (such as a hotel network),
even if they end up not doing so [22].

In the SSL stripping attack however, the browser is never presented with any
illegal SSL certificates since the attacker strips the whole SSL connection before
it reaches the victim. With no warning dialogues, the user has little to no visual
cues that something has gone wrong. In the case of SSL-only websites (websites
that operate solely under the HTTPS protocol) the only visual cue that such an
attack generates is the absence of lock icon somewhere on the browser’s window
(something that the attacker can compensate for by changing the .favico icon
of the website to a padlock). In partly-protected websites, where the attacker
strips the SSL protocol from links and login forms, there are no visual cues and
the only way for a user to spot the attack is to manually inspect the source code
and identify the parts that have been changed.

4 Automatic Detection of SSL stripping

In this section we describe our approach that automatically detects the existence
of a MITM attacker conducting an SSL stripping attack on a network. The main
strength of MITM attacks is the fact that the attacker has complete control of
all data coming in and going out of a network. Any client-side technique trying
to detect an attacker’s presence must never rely solely on data received by the
current network connection.

4.1 Core Functionality

Our approach is based on browser history. The observation that lead to this
work is that while a MITM attacker has at some point in time, complete control
of all traffic on a network, he did not always have this control. We assume that
users mainly use secure networks, such as WPA2-protected wireless networks or
properly configured switched networks and use insecure networks only circum-
stantially. Regular browsing of SSL-enabled websites from these secure locations
can provide us with enough data to create a profile of what is expected in a
particular webpage and what is not.

Our client-side detection tool, History Proxy (HProxy), is trained with the
requests and responses of websites that the user regularly visits and builds a
profile for each one. It is important to point out that HProxy creates a profile
based on the security characteristics of a website and not based on the web-
site’s content, enabling it to operate correctly on static as well as most dynamic
websites.

HProxy uses the profile of a website, the current browser request and re-
sponse along with a detection ruleset to identify when a page is maliciously
modified by a MITM conducting an SSL stripping attack. The detection ruleset
is straightforward and will be explained in detail in Section 4.3.

6 N. Nikiforakis, Y. Younan and W. Joosen

4.2 Architecture of HProxy

The architecture of HProxy comprises of the detection ruleset and a number
of components which utilize and enforce it - Fig. 1. The main components are:
a webpage analyzer, which analyzes and identifies the requests initiated from
the browser along with the server responses, a MITM Identifier which checks
requests and responses against the detection ruleset to decide whether a page is
safe or not and lastly a taint module which tries to prevent the leakage of private
information even if the MITM-identifier incorrectly tags a page as safe.

- WebPage Request

- — —
Analyzer

MITM
Identifier

Server
Page
Response -
- > Tainter
HTML

Detection Ruleset

HProxy

Fig. 1. Architecture of HProxy

Webpage analyzer The webpage analyzer is the component responsible of
identifying all the critical parts of a webpage. The critical parts of a webpage
are the parts that a MITM attacker can insert or alter in order to steal credentials
from the end users and are the following;:

— JavaScript blocks

— HTTP forms and their targets
— Iframe tags

— HTTP Moved messages

The Webpage Analyzer identifies all of the above data structures, along with
their attributes and records them in the page’s current profile. If a particular
page is visited for the first time then this current profile is registered in the

HProxy: Client-side detection of SSL stripping attacks 7

profile database, effectively becoming the page’s original profile, and the page
is forwarded to the user. If not, then the current profile will be checked against
the page’s original profile by the MITM Identifier. Why these structures are
dangerous will be described in detail in Section 4.3.

MITM Identifier The MITM Identifier component encapsulates almost all
the detecting capabilities of HProxy (except of the taint component which will
be discussed later). It uses the page’s current profile as created by the Webpage
Analyzer against the page’s original profile. In order to make a decision whether
a page is altered by an attacker or not, the MITM Identifier utilizes the detection
ruleset of HProxy. This ruleset consists of rules for every sensitive data structure
that was previously mentioned. Each rule contains the dangerous modifications
that can appear in each page, using the page’s original profile as a base. Any
modifications detected by the Webpage Analyzer that are identifiable by this
ruleset are considered a sign of an SSL stripping attack and thus the page is not
forwarded to the user.

PageTainter Even though we have strived to create a ruleset which will be
able to detect all malicious modifications we deliberately decided to allow con-
tent changes when we cannot decisively classify them as an attack. In order
to compensate for these potentially false negatives, HProxy contains a module
called PageTainter. The purpose of PageTainter is to enable HProxy to stop in
time the leakage of private user data, even when the MITM Identifier module
wrongly tags a malicious page as “safe”. For HProxy to stop the leakage of pri-
vate data, it must first be able to identify what private data is. In order to do
this, PageTainter modifies each webpage that contains a secure login form (iden-
tifiable by the password-type HTML element) and adds a JavaScript routine
which sends the password from it to HProxy once the user types it in. This pass-
word is recorded in HProxy in a domain,password tuple!. In addition to that, it
taints all forms with an extra hidden field which contains location information
so that we can later identify which page initiated a GET or a POST request.
For each request that initiates from the browser, the PageTainter module, using
the hidden domain field checks for the presence of the stored password in the
outgoing data. If the page is legitimate, the domain’s password will never ap-
pear in the HTTP data because it is exchanged only over SSL. A detection of it
signifies the fact that an attacker’s successful modification passed through our
MITM Identifier and is now sending out the password. In this case, HProxy does
not allow the connection to be established and informs the user of the attack. To
make sure that an attacker will not obfuscate the password beyond recognition
by the PageTainter, our detection ruleset has very strict JavaScript rules which
will be explained in the next section.

! HProxy runs on the same physical host as the browser(s) that it protects thus there
are no privacy issues with the stored passwords

8 N. Nikiforakis, Y. Younan and W. Joosen

4.3 Detection Ruleset

Using the description of SSL-stripping attacks as a base, we studied and recorded
all possible HTML and HTTP elements that could be misused by a MITM at-
tacker. This study resulted in a set of pragmatic rules which essentially describe
dangerous transitions from the original webpage (as recorded by HProxy) to all
future instances of it. A transition can be either an addition of one or more
HTML/HTTP elements by the attacker to the original webpage or the modifi-
cation of existing ones.

The detection ruleset consists of dangerous modifications for every class of
sensitive data structures. Each page that comes from the network is checked
against each class of rules before it is handed back to the user. In the rest of this
section we present the rules for each class of sensitive structures.

HTTP Moved Messages The HTTP protocol has a variety of protocol mes-
sages of which the “moved” messages can be misused in an SSL stripping attack
since their suppression can lead to unencrypted sessions (as shown in the exam-
ple attack in Section 2.1). The main rule for this class of messages states that,
if the original page profile contains a move message from an HTTP to an HTTPS
page, then any other behavior is potentially dangerous. Given an original request
of HTTP GET for domain_a and an original response stored in the profile database
of MOVED to HTTPS domain_a/page.a, we list all the possible modifications and
whether they are allowed by our ruleset, in the following table.

Current Response Modification Allowed?
MOVED HTTPS domain_a/page_a|None Yes
MOVED HTTPS domain_a/page_b|Changed page Yes
MOVED HTTP domain_a/page_a |Non-SSL protocol No
MOVED HTTP domain_b/page-a |Changed domain No
MOVED HTTPS domain_b/page_a|Changed domain No
OK <html>....</html> HTML instead of MOVED|No

This ruleset derives from the observation that the developers of a website
may decide to create new webpages or rename existing ones, but they will not
suddenly stop providing HTTPS nor export their secure service to another do-
main. For websites that operate entirely using SSL, this is the only class of rules
that will be applied to them as they will operate securely over HTTPS once the
MOVE message has been correctly processed.

The rest of the ruleset is there to protect websites that are partly protected
by SSL. Such websites use SSL only for their login forms and possibly for the
subsequent pages that result after a successful login. The transition from unpro-
tected to protected pages (within the same website) is done usually through a
HTTPS form target or through a HTTPS link.

JavaScript JavaScript is a powerful, flexible and descriptive language that
is legitimately used in almost all modern websites to make the user experience

HProxy: Client-side detection of SSL stripping attacks 9

better and to offload servers of common tasks that can be executed on the client-
side. All these features of JavaScript, including the fact that it is enabled by
default in all major browsers make it an ideal target for attackers. Attackers can
and have been using JavaScript for a multitude of attacks ranging from Cross-
site Scripting [11] to Heap Spraying attacks [19]. For the purpose of stealing
credentials, JavaScript can be used to read parts of the webpage (such as a
typed-in username and password) and send it out to the attacker.

JavaScript can be categorized as either inline or external. Inline JavaScript, is
written inline an HTML webpage, e.g. <html><script>...</script> </html>.
External JavaScript, is written in separate files, present on a webserver that
are being included in an HTML page using a special tag, e.g. <html><script
src="http://domainl/js_file.js"> </html>. Unfortunately for users, both
categories of JavaScript can be misused by a MITM. If an attacker adds inline
JavaScript in a webpage before forwarding it to the user, the browser has no
easy way of discerning which JavaScript parts were legitimately present in the
original page and which were later added by the attacker. Also, the attacker can
reply to a legitimate external JavaScript request with malicious code since he
already has full control over the network and can thus masquerade himself as
the webserver.

Because of the nature of JavaScript, HProxy has no realistic way of discerning
between original and “added” JavaScript except through the use of whitelisting.
The first time that a page which contains an HT'TPS form is visited all JavaScript
code (internal and external) is identified and recorded in the page’s profile. If in
a future request of that specific webpage, new or modified JavaScript is identified
then the page is tagged as unsafe and it is not forwarded to the user. HProxy’s
initial whitelisting mechanism involved string comparisons of JavaScript blocks
between page loads of the same website. Unfortunately though, the practice of
simple whitelisting can lead to false positives. A way around these false positives
is through the use of a JavaScript preprocessor. This preprocessor can distinguish
between the JavaScript parts that have been legitimately changed by the web
server and the parts which have been added or modified by an attacker. We
expand HProxy to include such a preprocessor and we explore this notion in
detail later on, in Section 5.

Iframe tags can be as dangerous as JavaScript. An attacker can add extra
iframe tags in order to overlay fake login forms over the real ones [7] or reply
with malicious content to legitimate iframe requests. Our detection ruleset for
iframe tags states that no such tags are allowed in pages where an SSL login
form is present. The only time an iframe tag is allowed is when the original
profile of a website states that the login form itself is coded inside the iframe.

HTTP Forms can be altered by a MITM attacker so as to prevent the user’s
browser from establishing an encrypted session with a web server, as was demon-
strated in Section 2.2. Additionally, extra forms can also be used by an attacker

10 N. Nikiforakis, Y. Younan and W. Joosen

<form target="https://www.mybank.com/login.php'>

Usermname: <input type="text' name="usr'> Original HTML
Password: <input type="password” name="pwd">

<fform>

<h3>Login in using our new Secure Login !</h3>

<form target="http://10.2.43.3/steal_creds.php'>

Usemame: <input type='text' name="usr'> :

Password: <input type='password' name="pwd"> Injected HTML
<fform>

Fig. 2. Example of an injected HTML form by a MITM attacker

as a way of stealing private information. The set of rules for this class of sensi-
tive data structures is similar to the HT'TP Move class ruleset. The previously
mentioned Webpage analyzer, records every form, target and protocol for each
page that an SSL login form is identified. The ruleset contains the dangerous
form modifications that could leak private user credentials. The main rules are
applied on the following characteristics:

— Absence of forms - The profile for each website maintains information
about the number of forms in each page, whether they are login forms and
which forms have secure target URLs. Once a missing form is detected,
HProxy reads the profile to see the type of the missing form. If the missing
form was a secure login form then HProxy tags this as an attack and drops
the request. If the missing form was a plain HTTP form (such as a Search
form) then HProxy allows the page to proceed.

— New forms - New forms can be introduced in a webpage either by web
designers (who wish to add functionality to a specific page) or by an attacker
who tries to lure the user into typing his credentials in the wrong form - Fig 2.
If the new form is not a login form then it is an allowed deviation from the
page’s profile. If the new form is a login-form it is only allowed if the target
of the form is secure and in the same domain as the original SSL login form
of the page. Even so, there is a chance that a MITM can convince a user to
submit his credentials through a non-login form. In these cases, PageTainter
will identify the user’s password in outgoing data and drop the request before
it reaches the attacker.

— Modified forms - In this case, an attacker can modify a secure form into an
insecure form. Based on the same observation from HTTP moved messages,
HProxy does not allow a modified form to be forwarded to the browser if
it detects: (a) a security downgrade in a login form (the original had an
HTTPS target whereas the current one has an HTTP target); or (b) a
domain change in the target URL

HProxy: Client-side detection of SSL stripping attacks 11

4.4 Redirect Suppression Revisited

In Section 2.1 we presented one of the most common SSL stripping attacks
against browsers, namely redirect suppression. The MITM suppressed the HTTP
Moved messages and provided the user with an unencrypted version of an origi-
nally encrypted website. In this section we repeat the attack but this time, the
user is running the HProxy tool. Steps 1-5 are the same with the earlier example
but are repeated here for the sake of completeness.

1. The attacker launches a successful MITM attack against a wireless network
becoming the network’s gateway. From this point on, all requests and re-
sponses from any host on the wireless network are inspected and potentially
modified by him.

2. An unsuspecting user from this wireless network uses his browser and types
in the URL bar, mybank.com. The browser crafts the appropriate HTTP
message and forwards the message to the network’s gateway.

3. The attacker inspects the message and realizes that the user is about to
start a transaction with mybank.com. He forwards the message to MyBank’s
webserver.

4. mybank.com protects their entire website using SSL thus, the webserver re-
sponds with a 301 (Moved Message) to https://www.mybank. com.

5. The attacker intercepts the move message, and instead of forwarding it to the
user, he establishes a secure connection with MyBank and after decrypting
the resulting HTML, he forwards that to the user.

6. HProxy receives the response from the “server” and inspects it. HProxy’s
trained profile for MyBank states that mybank. com is an SSL protected web-
site and when the user requests the website using HTTP, the server redirects
him to the HT'TPS version of it. This time however HProxy identifies the re-
sponse as cleartext HTML which is not acceptable according to its detection
ruleset.

7. HProxy drops the request and notifies the user about the presence of a MITM
on the local network along with specific details.

5 Discussion

By analyzing the JavaScript code generated by the top visited websites (as re-
ported by Alexa [24]) we discovered that the dynamic nature of today’s Internet
doesn’t stop in dynamically generated HTML. Many top websites provide dif-
ferent JavaScript code blocks each time they are visited, even when the visits
are seconds apart. This means that a simple whitelisting of JavaScript based on
string comparison would result in enough false positives to render HProxy unus-
able. In this section we discuss two techniques that can greatly reduce these false
positives: JavaScript preprocessing and Signed JavaScript. The final version of
HProxy includes a JavaScript Preprocessor while Signed JavaScript can be used
in the future to completely eliminate false positives. We also describe a differ-
ent way of identifying a MITM by inspecting client requests and the potential
problems of that approach.

12 N. Nikiforakis, Y. Younan and W. Joosen

5.1 JavaScript Preprocessing

Most of the JavaScript blocks, even the ones that constantly change, follow a spe-
cific structure that can be tracked along page loads. By comparing internal and
external JavaScript along two consecutive page loads of a specific webpage, we
can discover the static and the dynamic parts of that code. E.g., The JavaScript
code in two consecutive loads of Twitter’s login page differs only in the contents
of a specific variable - Fig. 3

We leverage this re-occurring structure to design a JavaScript preprocessor
that greatly reduces false positives. When a website is visited for the first time
through HProxy, the Webpage Analyzer (Section 4.2) makes a duplicate request
and compares the JavaScript blocks from the original response and the duplicate
one. If the blocks are different it then creates a template of the parts that didn’t
change and records the place and length of the dynamic parts. This informa-
tion is stored in the Web pages profile and all future visits of that website will
be validated against this template. This enables us, to discern between normal
dynamic behavior of a website and JavaScript that was maliciously added by a
MITM in order to steal the user’s credentials. Although a JavaScript preprocess-
ing that would work on an interpretation level would possibly be able to produce
zero false positives we believe that the overhead of such an approach would be
prohibitively high and thus we did not research that direction.

5.2 Signed JavaScript

Signed JavaScript (SJS) is JavaScript that has been signed by the web server
using a valid certificate such as the one used in HT'TPS communications. SJS can
provide among other features (such as access to restricted JavaScript functions)
the guarantee that the script the browser parses has not been modified since
it was sent by the Web server [17]. This integrity assurance can be used by
HProxy to whitelist unconditionally all JavaScript code blocks that are signed.
The downside of this technique is that it requires both server and client-side
support?.

5.3 Inspecting Client Requests vs. Server Responses

It is evident that trying to secure JavaScript at the client-side can be a tedious
and error-prone process. A different approach of detecting a MITM which may at
first appear more appealing is to analyze the client-side requests for anomalous
behavior rather than the server-side responses to client-side requests. In such a
case, the resulting system would inspect the requests (both secure and insecure)
of the browser and compare them to the requests done in the past. A security
downgrade of a request, (e.g. the browser is currently trying to communicate to
website X using an unencrypted channel whereas it always used to communicate
over a secure channel), would be a sign of a MITM operating on the network

2 At the time of this writing, only Mozilla Firefox appears to support SJS.

HProxy: Client-side detection of SSL stripping attacks 13

page.coniroller_name = 'SessionsController’;
page.action_name = 'new'’;
twitr.form_authenticity_token =
'bcf48ddc78846healdh1f357300d3edadl74e2ee’;

page.controller_name = 'SessionsController’;
page.action_name = 'new’;
twitr.form_authenticity_token =
'644bblda2eaf04ef5983b7b36d381411d962856a';

Fig. 3. Portion of the JavaScript code present in two consecutive page loads of the
login page of Twitter. The underlined part is the part that changes with each page
load

and the request would be dropped. In such a system, JavaScript whitelisting
would not be an issue since HProxy would only inspect the outgoing requests,
regardless of their origin (HTML or JavaScript).

While this approach looks promising it produces more problems than it solves
since it has no good way of discerning the nature of new outgoing requests.
Consider the scenario where an attacker adds a JavaScript routine which copies
the password from the correct form, encrypts it and sends it out using an AJAX
request to a new domain. The system would not be able to find a previous
outgoing request to match the current request by, and would have to either
drop the request (also dropping legitimate new requests - false positives) or let
it pass (false negatives). Also, in partly SSL-protected pages, where the client
communicates with the same website using both encrypted and unencrypted
channels, the MITM could force the browser to send private information over
the wrong channel which would again result in leaking credentials.

For these reasons, we decided that a combination of inspecting server re-
sponses, preprocessing JavaScript and tracking private data (through the Page-
Tainter - 4.2) would be more effective than inspecting client requests and thus
we did not implement such a system.

6 Evaluation

In this section we provide a security evaluation, the number of false positives
and the performance overhead of our approach.

6.1 Security Evaluation

HProxy can protect the end-user against the attacks described in [13] as well as
a number of new techniques that could be used to steal user credentials in the

14 N. Nikiforakis, Y. Younan and W. Joosen

context of SSL stripping attacks. It can protect the user from credential stealing
through redirect suppression, insecure forms, JavaScript methods and injected
iframe tags.

In order to test the actual effectiveness of our prototype we created a network
setup with two clients and a wireless Access Point(AP) with Internet connection.
One client was the legitimate user and the other one the MITM, both running
the latest version of Ubuntu Linux. From the MITM machine we enabled IP
forwarding and we used the arpspoof (part of the dsniff suite [6]) to position
ourselves between the victim machine and the AP. We then run sslstrip [21],
a tool which strips the SSL links from incoming traffic, creates SSL tunnels with
the legitimate websites and captures sensitive data typed by the user. We started
browsing the web from the victim machine and we observed that pages which
normally are protected through SSL (like GMail and Paypal) were now appearing
over HT'TP, without any browser warnings whatsoever. Any data typed in fields
of those pages were successfully eavesdropped by the MITM host.

We reset the experiment, enabled HProxy and started browsing the web. We
browsed through a number of common websites so that HProxy could create a
profile for each one of them. We then repeated the procedure of becoming MITM
and run sslstrip. Through the victim client, we started visiting all the pre-
viously “stripped” websites. This time however, HProxy detected all malicious
changes done by sslstrip and warned the user of the presence of a MITM
attacker on the network.

6.2 False Positives

A false positive, is an alert that an Intrusion Detection System (IDS) issues
when it detects an attack, that in reality did not happen. When HProxy parses
a page, it can occasionally reach to the conclusion that the page was modified by
an attacker even if the page was legitimately modified by the web server. These
false conclusions can confuse the user as well as undermine his trust of the tool.
Most of HProxy’s false positives can be generated by its JavaScript rules, as
explained in section 4.3.

In order to make these occasions as rare as possible we decided to monitor
JavaScript blocks only in pages that contain (or originally contained) secure
login forms. This decision does not undermine the overall security of HProxy
since in the context of SSL Stripping attacks, JavaScript can only be used to
steal credentials as they are typed-in by the user in a secure form. In addition to
that, we developed a JavaScript Preprocessor, as explained in Section 5.1 which
generates a template of each website and a list of expected JavaScript changes.

To measure the amount of false-positives, we compiled a list of 100 websites
that contain login pages and we programmed Firefox using ChickenFoot [4] to
automatically visit them three consecutive times. Firefox’s incoming and outgo-
ing traffic was inspected by HProxy which in turn decided whether the page was
secure or not. The first time the page was visited, HProxy created a profile for
it, which it used for the next two times. Due to our lab secure network settings,
any attack reported by HProxy was a false positive.

HProxy: Client-side detection of SSL stripping attacks 15

20
15 —

10

False Positive %

JS PreP JS PreP+T
Whitelisting Methods

Fig. 4. False-positive ratio of HProxy using three different methods of whitelisting
JavaScript

In Fig. 4 we present the ratio of HProxy’s false-positives using three methods
of whitelisting JavaScript. The first method that we used is simply gathering all
the JavaScript blocks of a webpage and computing their MD5 checksum. If the
JavaScript blocks between two page loads differ, then their checksums will also be
different. In the second method, we use the JavaScript preprocessor with a strict
template, where the changes detected by the preprocessor must be in the precise
place and of precise length as the ones originally recorded. Finally we use the
same preprocessor but this time we include a “tolerance factor” of 10 characters,
where the position and length of changes may vary up to 10 characters (less that
1% of the total length of JavaScript code for most websites).

Using the last method as the whitelisting method of choice, HProxy can
handle almost all JavaScript changes successfully. The false-positives are created
by webpages which produce JavaScript blocks of different length each time that
they are visited. The websites that contain such pages are always the same and
can thus be added to a list of unprotected pages.

6.3 Performance

To measure the performance overhead of our HProxy prototype, we used a list
of the top 500 global websites [24] and we programmed Firefox to visit them ten
times each while measuring how much time each page needed to fully load. In
order to avoid network inconsistencies we downloaded a copy of each website and
browse them locally using a web server that we setup on the same machine that
Firefox was running. All caching mechanisms of Firefox were disabled and we
were clearing the Linux memory cache between experiments. We repeated the
experiment three times and in Fig. 5 we present the average load time of Firefox
when it run: (a) without a proxy (b) using a proxy that just forwarded requests
to and from Firefox and (c) using HProxy. Hproxy shows an overhead of 33%
when compared with the forwarding proxy and 51% when compared with Firefox

16 N. Nikiforakis, Y. Younan and W. Joosen

1160

1071.13

1060

860 —

T80 —

Average PageLoad time (ms)

Tiny HT TPProxy
Browsing method

HProxy

Fig. 5. Average load time of the top 500 websites of the Internet when accessed locally
without a proxy, with a simple forwarding proxy(TinyHTTPProxy) and with HProxy

directly accessing the web pages. While this overhead appears substantial, it is
important to remember that even the 51% overhead is actually an overhead of
0.41 seconds of time. Firefox starts rendering received content, long before each
page fully loads. This means that the user can start “consuming” the content of
each page without having to wait for all objects to be downloaded. Given this
behavior, we believe that the added delay of HProxy is only minutely, if at all,
perceived by the user during normal web browsing.

7 Implementation

We implemented a prototype version of HProxy using Python. We used an al-
ready implemented Python proxy, TinyHTTPProxy [10] and we built on top of
it to add the various detection mechanisms that were described in earlier sec-
tions. We chose to implement HProxy as a stand-alone application and not as a
browser plugin because we wanted to test parts of its functionality (such as the
AJAX functions emmited by the PageTainter module) with multiple browsers.
HProxy runs on the same physical machine as the browser(s) that it protects. A
proxy running on a different machine could potentially be used by multiple users
to improve caching but that would allow a MITM to impersonate HProxy and
steal user credentials. The Webpage Analyzer and the PageTainter modules use
the BeautifulSoup HTML parser [2] to recognize forms, JavaScript and iframe
tags. For the HTTP Moved messages we wrote our own parser using regular
expressions.

The reason why we chose Python instead of another programming language is
because Python’s features make it ideal for fast prototyping. We believe however,
that if HProxy gets re-implemented using a compiled language or if it becomes
part of a browser (as an extension or as part of the browser’s code) the overhead
of its use will be much lower than the one we measured in Section 6.3.

HProxy: Client-side detection of SSL stripping attacks 17

8 Related work

To the best of our knowledge, this paper is the first academic countermeasure
which is specifically geared towards SSL stripping attacks. Previous studies
mainly focus on the detection of a MITM attacker especially on wireless net-
works. While a number of these studies detect a wider range of attacks than our
approach, it is important to point out that most of them require either specific
hardware or knowledge of the network that surpasses the average user’s session.
This effectively means that unless the techniques are employed before-hand by
the administrators of the network they can be of little to no use to the connecting
clients. On the other hand HProxy is a client-side tool which protects users from
SSL stripping attacks without requiring any support from the wireless network
infrastructure.

A number of studies use the information already existing in the 802.11 pro-
tocol to identify attackers that try to impersonate legitimate wireless nodes by
changing their MAC address. The authors of [9,26] use the sequence number
field of MAC frames as a heuristic for detecting nodes who try to mimic existing
MAC addresses. The sequence number is incremented by the node every time
that a frame is sent. They create an intrusion detection system which identifies
attackers by monitoring invalid, duplicate or dis-proportionally large sequence
numbers. Martinez et al. [14] suggest the use of a dedicated passive Wireless
Intrusion Detection System (WIDS) which identifies attackers by logging and
measuring the time interval between beacon frames. Beacon frames that were
broadcasted before the expiration of the last beacon frame (as announced by
the AP) are a sign of an impersonation attack. In the same manner, Laroche et.
al [12] present a WIDS which uses information such as sequence numbers and
fragment numbers, to identify layer-2 attacks. Genetic algorithms are executed
against these datasets in an effort to identify impersonating nodes. Unfortu-
nately, their IDS requires training on labeled data sets making it impractical
for fast fluctuating wireless networks such as the ones deployed in hotels and
airports where wireless nodes are constantly added and removed.

Other researchers have focused more on the physical characteristics of wire-
less networks and how they relate to intrusion detection. Chen et. al [3] as well
as Sheng et al. [18] use the Received Signal Strength (RSS) of a wireless access
point as a way to differentiate between the legitimate access point(s) and an
attacker masquerading as one. In both studies, multiple passive gathering de-
vices are used to record the RSS and the data gathered is analyzed using cluster
algorithms and Gaussian models. Similarly Suski et al. [23] use special wireless
hardware monitors to create and monitor an “RF Fingerprint” based on the
inherent emission features of each wireless node. While the detection rates of
such studies are quite high, unfortunately their approaches are inherently tied
to a significant increase in setup costs (in time, hardware or both) making them
unattractive for everyday deployment environments.

Moving up to the top layer of the OSI model, several studies have shown
that security systems lack usability and that users accept dialogues and warnings
without really understanding the security implications of their actions [1, 5, 8, 22].

18 N. Nikiforakis, Y. Younan and W. Joosen

Xia et al. [27] try to combat MITM attacks by developing a system which tries
to give as much information to the user as possible when invalid certificates are
encountered or when a password is about to be transmitted over an unencrypted
connection. Due to the nature of SSL stripping attacks, the attacker does not
have to present an invalid certificate in order to successfully eavesdrop the user,
thus the part of their approach that deals with invalid certificates is ineffective
against it. The part that deals with the un-encrypted transmission of a password
can be of some use but can be easily circumvented using JavaScript or iframe
tags as shown in Section 4.3.

9 Conclusion

Hundreds of thousands of websites rely on SSL daily to protect their customers’
traffic from eavesdroppers. Recently though, a new kind of attack against the
usage of the SSL protocol surfaced: SSL stripping. The power of such an attack
is mainly due the fact that it produces no negative feedback, something that
users have been unconsciously trained to search for as an indicator of a page’s
“insecurity”.

In this paper we demonstrated that SSL stripping attacks are a realistic
threat and presented a countermeasure that protects against them. This coun-
termeasure, called HProxy, leverages the browser’s history to create security
profiles for each website. These profiles contain information about the use of
SSL and every future load of that website is validated against that profile. Our
prototype implementation of HProxy accurately detected all SSL stripping at-
tacks with very few false positives. Our evaluation of HProxy showed that it can
be used with acceptable overhead and without requiring server side support or
trusted third parties to secure users against this type of attack.

10 Acknowledgments

This research is partially funded by the Interuniversity Attraction Poles Pro-
gramme Belgian State, Belgian Science Policy, and by the Research Fund K.U.
Leuven.

References

1. Hazim Almuhimedi, Amit Bhan, Dhruv Mohindra, and Joshua Sunshine. Toward
Web Browsers that Make or Break Trust. In Symposium Of Usable Privacy and
Security (SOUPS), 2008.

2. BeautifulSoup Parser. http://www.crummy.com/software/BeautifulSoup/.

3. Yingying Chen, Wade Trappe, and Richard P. Martin. Detecting and Localizing
Wireless Spoofing Attacks. In in Proceedings of the Fourth Annual IEEE Commu-
nications Society Conference on Sensor, Mesh and Ad Hoc Communications and
Networks (IEEE SECON 2007), San Diego,CA, USA, 2007.

o

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

HProxy: Client-side detection of SSL stripping attacks 19

Chickenfoot for Firefox: Rewrite the Web. http://groups.csail.mit.edu/uid/
chickenfoot/faq.html.

Rachna Dhamija, J. D. Tygar, and Marti Hearst. Why phishing works. In CHI ’06:
Proceedings of the SIGCHI conference on Human Factors in computing systems,
pages 581-590, New York, NY, USA, 2006. ACM.

dsniff. http://monkey.org/~dugsong/dsniff/.

Manuel Egele, Marco Balduzzi, Engin Kirda, Davide Balzarotti, and Christopher
Kruegel. A Solution for the Automated Detection of Clickjacking Attacks. In
Proceedings of ASIACCS, Beijing, China, April 2010.

Batya Friedman, David Hurley, Daniel C. Howe, Edward Felten, and Helen Nis-
senbaum. Users’ conceptions of web security: a comparative study. In CHI ’02:
CHI 02 extended abstracts on Human factors in computing systems, pages T746—
747, New York, NY, USA, 2002. ACM.

Fanglu Guo and Tzi cker Chiueh. Sequence number-based mac address spoof
detection. In RAID, pages 309329, 2005.

Suzuki Hisao. Tiny HTTP Proxy in Python. http://www.okisoft.co. jp/esc/
python/proxy/.

Amit Klein. Cross Site Scripting Explained, Sanctum White Paper, 2002.
Patrick LaRoche and A. Nur Zincir-Heywood. Genetic Programming Based WiFi
Data Link Layer Attack Detection. In CNSR ’06: Proceedings of the 4th An-
nual Communication Networks and Services Research Conference, pages 285—292,
Washington, DC, USA, 2006. IEEE Computer Society.

Moxie Marlinspike. New Tricks for Defeating SSL in Practice. In Proceedings of
BlackHat 2009, DC, 2009.

Asier Martinez, Urko Zurutuza, Roberto Uribeetxeberria, Miguel Ferniandez, Je-
sus Lizarraga, Ainhoa Serna, and naki Vélez, I' Beacon Frame Spoofing Attack
Detection in IEEE 802.11 Networks. In ARES °08: Proceedings of the 2008 Third
International Conference on Awvailability, Reliability and Security, pages 520-525,
Washington, DC, USA, 2008. IEEE Computer Society.

Corey Nachreiner. Anatomy of an ARP Poisoning Attack. http://wuw.
watchguard.com/infocenter/editorial/135324.asp.

NetCraft. One Million SSL Sites on the Web. http://news.netcraft.com/
archives/2009/02/01/one_million_ssl_sites_on_the_web.html.

Jesse Ruderman. JavaScript Security: Signed Scripts. http://www.mozilla.org/
projects/security/components/signed-scripts.html.

Yong Sheng, Keren Tan, Guanling Chen, David Kotz, and Andrew Campbell. De-
tecting 802.11 MAC Layer Spoofing Using Received Signal Strength. In Proceedings
of INFOCOM 2008, pages 1768 — 1776, 2008.

Alexander Sotirov. Heap Feng Shui in Javascript. In Proceedings of BlackHat
FEurope 2007, 2007.

The SSL Protocol. http://www.webstart.com/jed/papers/HRM/references/
ssl.html.

Moxie Marlinspike’s sslstrip. http://www.thoughtcrime.org/software/
sslstrip/.

Joshua Sunshine, Serge Egelman, Hazim Almuhimedi, Neha Atri, and Lorrie Faith
Cranor. Crying Wolf: An Empirical Study of SSL Warning Effectiveness. In Pro-
ceedings of Useniz Security, 2009.

W.C. Suski, M.A. Temple, M.J. Mendenhall, and R.F. Mills. Using Spectral Fin-
gerprints to Improve Wireless Network Security. In Global Telecommunications
Conference, 2008. IEEE GLOBECOM 2008. IEEE, pages 1-5, 30 2008-Dec. 4
2008.

20

24.
25.

26.
27.

N. Nikiforakis, Y. Younan and W. Joosen

Alexa Top 500 Global Sites. http://www.alexa.com/topsites.

Jesse R. Walker, Submission Page Jesse Walker, and Intel Corporation. Unsafe at
any key size; An analysis of the WEP encapsulation, 2000.

Joshua Wright. Detecting Wireless LAN MAC Address Spoofing, 2003.

Haidong Xia and José Carlos Brustoloni. Hardening Web browsers against man-
in-the-middle and eavesdropping attacks. In WWW ’05: Proceedings of the 1/th
international conference on World Wide Web, pages 489-498, New York, NY, USA,
2005. ACM.

