
The Dangers of Human Touch:
Fingerprinting Browser Extensions through User Actions

Konstantinos Solomos†, Panagiotis Ilia†, Soroush Karami†, Nick Nikiforakis±, and Jason Polakis†

†University of Illinois at Chicago, {ksolom6,pilia,skarami,polakis}@uic.edu
±Stony Brook University, nick@cs.stonybrook.edu

Abstract
Browser extension fingerprinting has garnered considerable

attention recently due to the twofold privacy loss that it incurs.
Apart from facilitating tracking by augmenting browser finger-
prints, the list of installed extensions can be directly used to in-
fer sensitive user characteristics. However, prior research was
performed in a vacuum, overlooking a core dimension of ex-
tensions’ functionality: how they react to user actions. In this
paper, we present the first exploration of user-triggered exten-
sion fingerprinting. Guided by our findings from a large-scale
static analysis of browser extensions we devise a series of user
action templates that enable dynamic extension-exercising
frameworks to comprehensively uncover hidden extension
functionality that can only be triggered through user interac-
tions. Our experimental evaluation demonstrates the effective-
ness of our proposed technique, as we are able to fingerprint
4,971 unique extensions, 36% of which are not detectable by
state-of-the-art techniques. To make matters worse, we find
that ≈67% of the extensions that require mouse or keyboard
interactions lack appropriate safeguards, rendering them vul-
nerable to pages that simulate user actions through JavaScript.
To assist extension developers in protecting users from this
privacy threat, we build a tool that automatically includes
origin checks for fortifying extensions against invasive sites.

1 Introduction

Web browsers have evolved into complex software delivery
and execution platforms with an ever-expanding set of capa-
bilities, while capitalizing on technological advancements for
improving the user experience through novel functionality.
Unfortunately, the continuous deployment of new functional-
ity and features comes at a price, as new avenues for privacy
loss can be introduced. In fact, prior work has demonstrated
how browser mechanisms and features can be misused for
exfiltrating users’ personally identifiable or sensitive informa-
tion [22,27,28,33,35]) and persistently tracking users [13,45].

Accordingly, the prevalence of web tracking [34] has
heightened users’ privacy concerns, pressuring browser ven-

dors to provide better protections [40]. In fact, major browsers
continue to deploy anti-tracking defenses that aim to hinder
cookie-based tracking [21, 49, 53]. At the same time, this
paradigm-shift towards cookie-less tracking has resulted in an
increasing number of trackers adopting browser fingerprinting
techniques [41,42] that aim to identify, and by extension track,
devices based on the uniquely-identifying characteristics
of the browsers and underlying operating systems and
hardware [14, 15, 18, 20, 23, 25, 30, 31, 37–39, 52]. More
recently, researchers have explored techniques for detecting
which browser extensions are installed [32, 47, 48], which
can be used for augmenting browser fingerprints but also for
automatically inferring sensitive user characteristics [29].

Prior work on browser extension fingerprinting focused on
features that can be detected statically (e.g., unique resources
that are accessible to web pages) or dynamic behaviors that
occur automatically when an orchestrated browser with an
installed extension visited a specially crafted webpage (i.e.,
the honeypage). However, all these studies explored extension
fingerprinting in a vacuum, without considering how user (in-
ter)actions actually affect the fingerprintability of extensions.
As extensions aim to extend browsers’ functionality and offer
additional, and often specialized features, it is natural that
such actions may only occur after explicit user actions (e.g.,
highlighting some text, right-clicking it, and selecting an
action from the context menu). In other words, the threat
model considered by all prior work provides a limited view of
extension fingerprintability in realistic settings, and overlooks
how the presence of users introduces an additional dynamic.

In this paper we present the first, to the best of our knowl-
edge, exploration of how user actions can trigger unique
behaviors in browser extensions, thus allowing invasive or
malicious pages to infer that the user has installed specific
extensions. To that end, we first perform an analysis of exten-
sions’ metadata coupled with a static analysis of their code,
in order to extract information about the extensions’ behavior
and potential triggers. Specifically, we focus on extensions
that can run on any domain and include a set of permissions
and entries in their manifest that define interactive extension

components such as the extension’s browser icon and the con-
text menu items. Subsequently, we analyze the extracted data
and generate three different classes of behavioral templates.
These templates are built on top of unique and exclusive
user interactions that we categorize based on the actions
that they represent (i.e., involving the mouse, keyboard, or
browser interface). We follow a continuous testing approach
so as to achieve broad coverage and create a comprehensive
collection of interactions, which we implement as a dynamic
extension-exercising module that can be easily incorporated
into extension-analysis frameworks. Our module uses the
behavioral templates and the extensions’ metadata to exercise
each extension, and detects unique fingerprintable behaviors
that manifest as either changes to the honeypage’s DOM or
messages sent from the extension to the honeypage.

We evaluate our system’s extension fingerprinting
capabilities on three different datasets, that capture different
chronological snapshots of Chrome’s Web Store. Specifically,
we use the dataset by Karami et al. [29] and the dataset of
detected extensions by Lapperdrix et al. [32]. To enable
a more extensive longitudinal analysis we also crawl the
Chrome Web Store and collect recent versions of extensions
and new extensions that were not included in the two datasets
from prior work. The experimental evaluation of our novel
user-driven triggering techniques results in the detection of
4,971 browser extensions. When comparing to state-of-the-art
behavior-based fingerprinting [29], we find that ≈64% of
the extensions can only be detected through user-driven
interactions. For the other dataset used in our evaluation [32],
we were only able to obtain their detected extensions, so
we cannot calculate how many extensions missed by their
approach are solely detectable through user actions.

We also identify the lack of appropriate safeguards for ver-
ifying the provenance of received events in extensions. This
can be exploited by pages through JavaScript by simulating
mouse and keyboard interactions that trigger identifiable be-
haviors in vulnerable extensions. In more detail, we find that
≈67% of the extensions that require mouse or keyboard in-
teractions do not check the isTrusted attribute (a read-only
attribute generated by the browser which denotes whether an
event originates from a user action) and can thus be triggered
by the page. Moreover, our performance evaluation revealed
that this attack can be efficient, as a page can fingerprint
20 extensions using artificially crafted events in less than
400ms. Due to the severe privacy implications of this attack,
we develop a tool that can be used by extension developers to
retroactively fortify their extensions against this attack. Specif-
ically, this tool incorporates our static analysis techniques for
identifying relevant event listeners (mouse and keyboard), and
injects safeguarding code that checks the event’s provenance
and ignores events simulated by the webpage.

In summary, our research contributions are:
• We introduce a novel fingerprinting technique that offers

the first exploration of extension fingerprinting in a

real-world setting, where user actions can trigger unique
extension behaviors. Accordingly, we conduct a systematic
analysis of such behaviors in practice and develop a module
for dynamically exercising and analyzing extensions.

• We conduct an extensive evaluation of user-triggered
extension fingerprinting, and find that our approach can be
effectively used in conjunction with other state-of-the-art
fingerprinting techniques as it enables the detection of a
significant number of previously-undetectable extensions.

• We demonstrate that extensions lack the necessary security
checks to prevent web pages from issuing simulated user
events that trigger their fingerprintable behaviors. As a
countermeasure, we develop a straightforward-yet-effective
tool for extension developers that automatically incorpo-
rates safeguards into their code.Our tool is available at [10].

2 Background and Threat Model

This section provides pertinent background information on
browser extensions and technical characteristics that enable
the techniques that we present in this work.

Extension structure and components. A browser exten-
sion is a set of different components, that implement the exten-
sion’s functionalities and programmatic logic. The Manifest
file plays a crucial role as it allows developers to specify back-
ground and content scripts, external pages, and permissions
that enable extensions to achieve their desired functionality.
Listing 1 shows a simplified example manifest file.

1 { "manifest_version": 2,
2 "background": {
3 "scripts": ["my-backgrnd.js"]},
4 "browser_action": {
5 "default_icon": {
6 "19": "button/button -19.png",
7 },
8 "default_title": "My title",
9 "default_popup": "popup/popup_page.html"},

10 "content_scripts": [
11 { "matches": ["<all_urls >"],
12 "js": ["content -script.js"]
13 }],
14 "permissions":

["activeTab","contextMenus","storage"]}

Listing 1: Simplified manifest example.

Background scripts. When a background script entry is
included in the extension’s manifest file, it is automatically
recognized by the browser, and the script runs as an indi-
vidual process. The background script contains HTML and
JavaScript code that implements the extension’s functionality.
Usually, the extension’s main logic is implemented in the
background, which operates independently from the rest of
the components. The background script communicates with
the content script through the browser’s Messaging API,
where it can issue individual requests and create long-lived
connections with the content script. Moreover, if the tabs

permission is defined in the manifest, the background script
can directly inject a content script or a CSS context in the
page using the chrome.scripting.executeScript and
tabs.insertCSS() functions, respectively.

Browser action: Default popup. A browser action’s popup
is only shown when the user clicks on the extension’s action
button in the toolbar. The popup supports the typical HTML
elements and structures a webpage would support and is
automatically resized to fit its contents in the browser. The
popup is only initially set under the default_popup property
in the manifest, where its path is the relative path within the
extension’s directory. It also runs individually and communi-
cates with the content script through the Messaging API. The
popup page can also modify the website visually by injecting
a CSS context programmatically using tabs.insertCSS().

Content scripts are a crucial component since they are the
only scripts that can be injected into the webpage. Essentially,
extensions use content scripts to modify the webpage and
communicate with the background script through the built-in
APIs. Content scripts are typically declared statically in the
manifest under the dedicated entry, or are programmatically
injected. The manifest file can also define which domains
the content script will execute on, either by explicitly listing
them or defining a pattern that is matched to the visited
domain. In more detail, content scripts use DOM requests
to control the rendered page and can also inject custom event
listeners in the page to listen for specific events. Listing 2,
shows an example of a content script listening for specific
user-driven events and then performing a series of DOM
modifications. This provides flexibility to developers as it
allows them to include additional extension functionality
which can be triggered by various user behaviors.

1 //click event listener
2 element.addEventListener

("click" , function (event) {
3 //change the style of the element
4 element.style.color = "red";
5 });
6 //key event listener
7 document.addEventListener

("keydown" ,function (event) {
8 //check if the keycode matches
9 if (event.keyCode ==65) {

10 //modify the page
11 document.style.color = "black";
12 }});

Listing 2: Mouse and key event listeners in a content script.

Permissions. An extension’s ability to access websites and
browser APIs is controlled through the “permissions”manifest
entry. In general, permissions are restricted to those that the
extension needs, and a subset of entries is shared between ex-
tensions. For example, the contextMenu allows the extension
to include a context menu item (the menu that appears when
the user right-clicks with the mouse) and to listen for these
specific events in their content script. Finally the developer
can also define the domain that an extension can run on

(using http://*/*, https://*/*, or <all_urls>) if
the content script is not present in the manifest.

Motivating example. Prior research has demonstrated var-
ious methods for fingerprinting extensions [29, 32, 44, 47, 48]
and has explored the significant privacy risks they introduce.
These techniques allow attackers to not only infer specific
information about the user’s browsing environment (which
can be used to augment the user’s browser fingerprint) but
to also infer private and sensitive information about the user
(e.g., health issues, religion, etc.). However, all prior studies
overlooked the fact that many extensions are dynamic and
reactive and may require user interactions prior to triggering
their functionality. Since extensions may only modify
the web page after receiving a specific user-driven event,
extension fingerprinting frameworks that do not incorporate
and systematically explore user actions are overlooking a
core component of browser extension functionality.

This behavior is exemplified by the popular Chrome exten-
sion for Google Translate. When installed, a user can highlight
a word on the page and the extension will automatically
render a separate window on top of the page that includes the
translation for different languages. The same functionality
is triggered when the user highlights a term and fires the
extension’s context-menu item through the right-click menu.
These behaviors are reflected in modifications and additions
to the page’s DOM, which would allow an attacker controlling
the page to detect the changes and fingerprint the extension.

Threat model. We assume that the user visits a malicious
or privacy-invasive web page that aims to infer which exten-
sions the user has installed in their browser. Furthermore, we
are interested in extensions that run on all domains and do
not restrict their functionality to a specific set of domains, as
these extensions can potentially be detected by any attacker.
Additionally, we limit our focus to extension behaviors that in-
teract with or modify web pages after being triggered by user
actions (e.g., we do not explore Web Accessible Resources
as they have been extensively explored in prior studies).

3 Methodology

Here we present our methodology for identifying extensions
that exhibit fingerprintable behavior that is triggered by
user interactions. Our approach consists of two phases: (i)
a static analysis of extensions’ source code and manifest
files for identifying the types of interactions that can activate
them, and (ii) a dynamic exercising phase that leverages our
automation templates for simulating user interactions.

3.1 Preparatory Phase
We first analyze the extensions’ manifest files to identify
those that meet the requirements outlined in §2, indicating
that they potentially expect user interactions. Subsequently,
we statically analyze the extensions’ source code so as to

identify the event listeners they implement and extract their
arguments. This allows us to understand the types of events
that extensions listen for. Based on the different types of
events that we observe, we generate appropriate behavioral
templates for automating the simulation of these interactions.

Manifest file. We are interested in extensions that (i) are
fingerprintable due to modifications to or interactions with
the visited page, and (ii) are not domain-specific (i.e., they run
on all domains). Since dynamically exercising extensions is
a time consuming process, we first parse the extension’s man-
ifest files and only select those that meet these criteria. This
will allow us to speed-up experiments by avoiding the costly
dynamic analysis phase for thousands of extensions which
will not exhibit fingerprintable behavior on arbitrary sites.

Since we want to identify extensions that can access and
modify a page’s DOM, we search for extensions that include
a content-scripts entry in their manifest. For such exten-
sions the developer also has to include a matches entry in the
manifest, specifying which domains the extension will run on.
For extensions that are not domain-specific, the values typi-
cally used are “<all_urls>” and “http://*, https://*”.
Furthermore, as described in §2, extensions can dynamically
execute a content script through their background scripts.
To identify such extensions we parse their manifest files
and select those that implement a background script and
require the “activeTabs” and “<all_urls>” permissions.
Subsequently, we statically analyze these background scripts
for identifying the ones that use the executeScript and
insertCSS APIs for dynamically running a content script
or injecting a CSS file into the web page.

Categories of user interactions. Through the preliminary
manual analysis of extensions we identified three general
categories of potential user interactions; we categorize the
different types of user actions as belonging to browser, mouse
and keyboard actions. Next, we outline how we perform an
initial selection of candidate extensions from each category
through our manifest analysis.

Browser actions. The first category includes interactions
that are initiated by the user when clicking on the extension’s
button (i.e. the extension’s icon typically shown next to the
browser’s address bar). In the simplest case, a user will click
on the extension button to activate it, which will result in the
extension executing its intended functionality. Extensions can
also include a popup page that is constructed by a separate
HTML file and appears when the extension’s button is clicked.
The popup may provide an interface that allows the user to
configure the extension, choose a mode of operation or alter
its functionality. Additionally, the popup may also require the
user to login, or even allow them to run specific functionalities
directly (e.g., play a video, control the volume). Enabling
this category of interactions requires that the extension has
a background script and implements an event listener that
captures click events on the extension’s button. Furthermore,
a browser_action entry needs to be included in the

manifest. Extensions that implement a popup also need to
define a default_popup in the manifest. As such, during the
preparatory phase we can identify which extensions support
interactions with their icon and popup, by parsing their
manifest files and looking for the aforementioned entries.

Mouse actions. For this category, an extension can specify
the contextMenus permission in its manifest to enable
“right-click” interactions. When this permission is requested,
the browser allows the extension to include additional
entries in the context menu (i.e., the menu that appears in
an overlay when pressing the mouse’s right button). These
newly included events are fired from the user’s mouse and
are processed by the respective extensions’ content scripts.

Keyboard actions. To handle keyboard-driven user
interactions the manifest can include a commands entry that
defines one or more keyboard shortcuts expected by the
extension. However, our initial exploration revealed that
extensions do not always define these commands in the
manifest; instead, it is more common to programmatically
check for keyboard events by including the appropriate event
listeners in their content scripts.

Static analysis. While analyzing the manifest files allows
us to create an initial set of candidate extensions, this provides
a limited view of extension’s user-driven capabilities. In fact,
extensions that leverage keyboard interactions are rarely evi-
dent from their manifest files. To uncover the user actions that
can potentially trigger extensions we need to statically analyze
extensions’ content scripts. Specifically, we need to identify
APIs and event handlers in the extensions’ content scripts that
expect events to be fired while the user interacts with the page.
We build upon the methodology introduced by Somé [46]
for detecting event listeners and extracting the events that
they listen for. First, we use Python’s jsbeautifier library
to deobfuscate extensions’ content scripts and obtain a
more “human readable” form of their source code. Then we
leverage Esprima [4] for parsing the content scripts’ code and
building their Abstract Syntax Trees (ASTs).

When the AST is created, we log the assignments to object
properties and the function definitions and calls. This gives us
detailed information regarding the type and value of each vari-
able and function, which we use for locating the functions that
expect events from the application (i.e., event listeners) and ex-
tracting their arguments. An event listener can exist as a stan-
dalone function or as a method for global objects and HTML
elements, while there are also various ways that an event
listener can be registered (e.g., window.addEventListener,
window[’addEventListener’]). As such, we take into
consideration all types of event listeners in each content
script (i.e., for the global object names of document, window,
top, self, this). Furthermore, the addEventListener API
has two arguments: (i) the message, which denotes the actual
event, and (ii) the function that is invoked when the event is
fired. We are only interested in the first argument, which is
a Literal specifying the type of the expected event.

Table 1: List of mouse and keyboard events compiled based
on the findings of our static analysis.

Event Action Event Action
Keyboard Mouse

Keydown Scroll
Keyup Mousewheel

Keypress
Key Press

Wheel
Scroll

Mouse Cut

Right ClickDoubleclick Doubleclick Copy
Select Paste
Click ContextMenu

Mousedown Mouseenter
Mouseup Mouseout
Blur Mousemove
Focus

Click

Mouseover

Movement

After identifying all the events expected by our extensions,
we manually sorted through the list of expected events and
determined which ones can be triggered via user interactions
and which actions can generate these events. For a more
complete and accurate mapping, we also cross-referenced
our findings with official documentation [7,8]. This was done
once, after our preliminary analysis, and is a one-time cost as
the generated list covers all relevant event listeners. Table 1
presents the list of interaction types that we compiled and the
mapping between the various events and type of interactions
(i.e., behaviors) that can trigger them. For instance, events
like mousedown, click, blur and focus can all be triggered
when the user clicks on the page and the included elements.
In the following subsections we present how we design our
user interaction automation templates that include actions
that aim to trigger all the aforementioned events.

3.2 User Interaction Templates
The previous stage provides information about the extensions’
structure (i.e., whether they include a clickable button, a
popup page and a content menu) and the type of events they
listen for. We leverage that information for designing and
generating behavioral user interaction templates that reflect
human-driven user actions. Each template includes various
types of actions that correspond to coarse or fine-grained inter-
action activities, aiming to fire relevant events that can trigger
extension functionality. Based on our aforementioned cate-
gorization, we define three general templates that encompass
actions related to the browser, mouse and keyboard.

Browser actions. This template includes event-driven
actions related to the browser interface. In the simplest case
we have extensions that include a clickable browser button
(i.e., they are activated when a user clicks on their icon).
Upon activation these extensions might exhibit behavior
that would allow us to detect their presence, such as altering
the page or exchanging messages with the page; a popular
extension that exhibits this behavior is Mercury Reader. As
such, the simplest interaction that is defined in this template is
to locate and click on the extensions’ button. Next, extensions

that include a popup page will typically include elements
such as buttons and checkboxes, and provide an interface
for the user to initialize, configure or control the extension’s
functionalities. Indicative examples are Ublock and Ghostery,
where users interact with the popup pages to specify their
preferences and enable/disable them. For such extensions, our
template first defines the action of clicking on the extension’s
browser icon, so that the popup page will appear, and then
it interacts with the page’s element by clicking, selecting
elements, activating buttons, and navigating its content.

Mouse actions. Moving beyond the browser’s interface, we
define a template that covers the user’s interactions with the
visited page through mouse actions. To that end, we leverage
the findings from the static analysis of content scripts regard-
ing events that are fired by actions associated with the mouse.
In this template we model behaviors as sequences of mouse
actions that can trigger the aforementioned mouse event listen-
ers. In the simplest case, the click and doubleclick events are
fired when the user clicks or doubleclicks the mouse, respec-
tively. We also include the mousedown and mouseup events in
the click category, since these two events are fired when the
mouse button is pressed and released during a click. The focus
and blur events are content-related and can also be triggered
with a click action (e.g., the user clicks on a text input area
to focus or blur its content). Furthermore, the select event is
fired when text in the page is selected. Since text selection can
also be achieved by doubleclicking text, a doubleclick action
allows us to trigger both the select and doubleclick events.

In a similar way, we categorize all the mouse events
that can be triggered when mouse movement is involved.
Although events such as mouseenter and mouseover have
differences in how they are fired, in the general case they
are both fired at an element when the mouse cursor moves
over that element (e.g., one difference is that mouseover is
also fired when the cursor moves over the element’s children
nodes). The interactions in this template are designed to
trigger all movement events. Finally, the scroll, mousewheel,
and wheel events can be triggered by a mouse scroll using
the mouse wheel as well as the browser’s scroll buttons.

The last type of mouse event covers all the events that are
related to a context menu and are fired when a right-click
is involved. The browser offers the cut, copy and paste
functionalities in the context menu, and an extension can
include the respective event listeners to detect these actions.
Finally, the contextmenu event is fired when the user clicks
on the context menu entry set by an extension.

Keyboard actions. These actions focus on events that are
triggered when the user presses a keyboard key during the
page’s navigation. Our static analysis process uncovered three
event listeners defined in extensions’ source code that are
related to keyboard actions, all of which can be enabled by a
single action, as pressing and releasing a key triggers all three
events that they listen for. We define key actions that vary
from single keystrokes to combinations of multiple keys.

Figure 1: During the preparatory phase, our system analyzes each extension’s manifest file and source code and extracts metadata
that we use for designing the user interaction templates. During the exercising phase, our system leverages these user interaction
templates to simulate realistic user actions, and creates behavioral signatures that enable fingerprinting user-triggered extensions.

4 Implementation Details

Here we present the implementation of our user-driven
extension-fingerprinting system. A high-level overview of
our system and analysis pipeline is provided in Figure 1.

Constructing a honeypage. Our goal is to trigger the
highest possible number of extensions that expect user interac-
tions. An extension that is triggered by such interactions may
require the user to interact with specific types of elements on
the page. Therefore, our testing framework needs to incorpo-
rate a honeypage, which we will visit and interact with when
exercising each extension, and capture any modifications
that occur. To that end, we leverage the code and dataset of
Carnus [29], which was able to capture modifications from
a large number of extensions, and build upon its honeypage.

We extend the honeypage by including various additional
elements that we will interact with during the experimenta-
tion phase. Specifically, we include textual terms and phrases
from the eight most used languages (i,e., English, Mandarin,
Russian, Japanese, Hindi, German, Arabic and French). Since
different languages share a subset of the same characters (e.g.,
English and Spanish), the terms we include may also trigger
extensions that expect terms in a language that we have not
explicitly included. Moreover, to satisfy all event listeners and
behavior requirements, we also include a typical HTML form
with username and email fields, and an input area where a
user can potentially input text or paste information. Such ele-
ments are appropriate for triggering specific mouse events like
select and focus, which are specifically designed for such
elements. Moreover, our honeypage contains different anchor
elements with link attributes, containing both inner domains
and external 3rd-party pages. As we detail in the next sub-
section, we instruct the framework to interact with the above
elements through a set of different user-simulated actions.

Applied user interactions. Having introduced the user in-
teraction templates in §3, here we dig deeper into the frame-
work design and detail the methods used to apply each tem-
plate. We start by performing simple and straightforward
actions that can trigger an extension on their own, and then

move to more complex interactions that are composed using a
sequence of actions. Furthermore, we distinguish actions that
depend on the page’s content (we refer to them as targeted
actions) and those that are independent of the page and its ele-
ments (referred to as generic actions). For example, a click can
be either targeted or generic – clicking somewhere on the page
is a generic action while clicking on a term is a targeted action.

Browser interactions. First, we detail our process for
generating actions based on the browser-event template.

Extension button. Our testing process starts by applying the
most straightforward action for the browser interactions, i.e.,
the user clicks on the extension’s icon. Without performing
any other interactions, this mouse click is sufficient for trigger-
ing certain extensions. Specifically, when a user clicks on the
extension’s icon, the click event is captured by the respective
event listener in the extension’s background script (if there is
such an event listener present), triggering the extension to run
its intended functionality. For instance, this could result in the
extension communicating with the page through its content
script for injecting elements or modifying the page’s code.

Next, we extend this simple action by including interac-
tions with the page’s content. In this scenario, the simulated
user first selects a page element (i.e., highlights a term) and
then clicks the extension’s icon. In triggered extensions the
selected value will be read by the content script and passed
to the background script, which will perform any additional
actions. For example, an extension that translates text would
expect the user to select a word or a sentence on the page and
then click the extension’s icon, in which case a translation
will be provided. We incorporate this type of interaction and
behavior in our framework under the browser action category.

Extension popup page. We follow a similar approach for
the external popup and option pages. In these extensions,
once the user clicks the extension’s icon, a separate HTML
page will appear underneath the icon. We have empirically
observed that developers typically design these popups to
be visually simple and easily accessible so as to help users
navigate. In our framework, once the simulated user clicks
on the extension’s icon and the external page loads, we focus

on the popup page and click all elements (e.g., radio buttons,
checkboxes, and panels). Even without prior knowledge of
the page’s structure, we are able to interact with its elements
and components. For completeness we also include a text-
selection action in this template interaction i.e., we select a
term in the page and then interact with the popup’s elements.

As the popup page may include extension configuration
options that either enable the extension or alter its default be-
havior, interacting with its elements can trigger the extension
and lead to behavior that is observable by the page. The in-
teractions in this template are sufficient for handling the vast
majority of extensions. However, our template may not be able
to handle complex popup pages that require additional user
actions (e.g., installing other applications locally, registering
and logging into an account). We also adopt the same set of
interactions for Options Pages. The options page loads in a
separate browser page when the user installs the extension and
expect an initial configuration or modification of its current
settings. We apply the same rules to initiate the page’s behav-
ior and log all the modifications that occur in the honeypage.

Mouse interactions. Next, we detail our process for
generating actions based on the mouse-event template.

Clicks, doubleclicks & content selection. For the mouse ac-
tions template, we follow a building approach similar to that
of the browser-event template. The first building block con-
tains the simple left click (single or repetitive) that a user fires
upon visiting the page. This action is generic since it does
not interact with any page elements but fires an event to the
page itself. While extensions that contain such event listen-
ers are triggered by the fired mouse event, we have observed
that extensions may also require content-related actions,
including simple clicks or doubleclicks that select page ele-
ments and content. Following that principle, we incorporate
the selection of page elements into this template’s interactions.
Since the extension’s functionality could also rely on the lan-
guage of the content, we include terms of various languages in
our honeypage and emulate interactions with all these terms.

Copy, paste, scroll. The subsequent content-related actions
include the context menu (right-click) actions provided by
the browser interface (Copy, Cut, Paste) and the scrolling and
wheel events that reflect the user’s scrolling action. A copy
or cut event is only available if the user selects a term on
the page and then fires them through the context menu. We
expand the previous set of actions, including the selection of
a term followed by the copy and cut commands. Following
those commands, the paste action is dependent on the previ-
ous activities; as such we instruct our framework to paste the
copied content into an empty input area. We also replicate a
user’s behavior that copies information and pastes it into a spe-
cific empty area by activating and focusing on the input area.
For completeness, we also trigger a selection event by high-
light the content inside the input area, to trigger any additional
event listeners. The last action that we include is scrolling; as
before, we select a term on the page for completeness and per-

form the scrolling action, as a user would typically do. In prac-
tice, even if the term selection is not required by an extension’s
functionality it will not interfere with the scrolling action.

Context-menu items. In the last subset of mouse-related ac-
tions that our framework supports, we implement actions that
trigger context menu items added by extensions. Similar to
the left-click mouse events, the user might trigger the context-
menu item through various actions. The framework replicates
this behavior by triggering the extension element in different
parts of the page. Specifically, at first, it fires the right-click on
the page without specifying an element. Following the design
principle of the previously implemented set of actions, it se-
lects a term by highlighting it and then firing the same activity.
Our framework also replicates similar context-related events
by triggering the context-menu over a hyperlink of an anchor
element present on the honeypage and an image element.

Keyboard interactions. Finally, we detail our process for
generating actions based on the keyboard-event template.

Single, repetitive & combined keystrokes. Our framework
adheres to a similar strategy for the keyboard event templates
when simulating user interactions. The user will trigger a
keyboard event directly on the page or after selecting and
interacting with a page element. The framework performs the
following actions to replicate this set of interactions: first, it
sends a keyboard event directly on the page. Afterward, it
selects and highlights a page element (term) and then sends
the same key event again. Since we don’t know which key
event triggers the extension, we start by sending single actions
for all the available keyboard characters and symbols (e.g., al-
phabet characters, numbers, and special characters). We have
also observed that extensions may expect repetitive keyboard
events used as a “special" combination of keys. For this, we ex-
pand the initial set of interactions, and also include repetitive
keystrokes of the same character (e.g., an extension requires a
repetitive keystroke of b b to get triggered). Moving a step fur-
ther, we also include special keys (ctrl, alt, ctrl-alt,
ctrl-alt-shift) combined with the aforementioned key-
board characters and numbers. In order for our system to not
interfere with internal browser functionality we exclude short-
cut key combinations already defined and allocated by the
Chrome browser [2]. Our template is designed so as to exhaust
all potential key interactions that a typical user could trigger,
using this iterative process for creating keyboard events.

5 Experimental Setup

Interaction automation. Our framework for exercising
extensions is driven by the Chrome browser, which we
orchestrate using Selenium [11]. The most critical component
of our framework is our User Interaction Automator, which
leverages the PyAutoGUI module [9], a cross-platform GUI
automation Python module that is used to programmatically
control the mouse and keyboard. An important aspect of
this module’s functionality is that it uses the actual mouse

and keyboard devices and simulates actions similar to how
a typical user would perform them. Additionally, since the
honeypage and browser are under our control, we know a
priori the position and size of each element and can replicate
each action from the interaction templates by providing the
x-y coordinates followed by the specific action. For exam-
ple, successively calling pyautogui.moveTo(100,500) and
pyautogui.doubleClick() will move the mouse to the
specified coordinates and then perform a mouse doubleclick.

Using this approach we handle the majority of the browser,
keyboard, and mouse interactions that we have defined, by
providing the coordinates of each element that we want to
include in our interaction and firing the respective events. We
follow a different approach for browser interactions that result
in a browser-external popup page; in such cases we rely on left
mouse clicks, and tab and spacebar key events. We found
that by combining these mouse and keyboard events we can
successfully navigate the popup page without prior knowledge
of its structure or content, changing the focus of elements,
and selecting/enabling elements like buttons and radio boxes.

Fingerprint generation. To collect extensions’ behavioral
signatures we follow a similar approach to prior work [29].
We load each extension into the browser and visit the honey-
page, wait for 15 seconds for the extension to initialize, load,
and perform any initial modifications on the page, and then
capture a snapshot of the page’s state. This snapshot contains
the page’s Outer HTML (DOM), the external resources loaded,
and the messages broadcast by the extension to the page. We
use the Performance API [12] to log any external resources
fetched, and include a message event listener in the page (i.e.,
document.addEventListener(“message”)) for logging
the messages that are broadcast. Finally, we store each
snapshot into a separate JSON document for analysis.

After the initial snapshot extraction, we apply the appro-
priate interactions according to the entries in the extension’s
manifest file. For example, we start by applying the template
for browser actions if a browser_action entry is defined
in the manifest. If the extension has a popup page, we
apply the template’s interactions with the popup page. After
that, we apply the templates that describe the mouse and
keyboard interactions. These two templates are applied to
all the extensions that we exercise. This allows our system
to compensate for any event listeners missed during the static
analysis of a given extension: even if we missed a listener
for a specific type of events, our collection of actions curated
from the static analysis of all the extensions will contain it.

After performing a given action, we wait for one second to
allow for the extension to perform any modifications and our
framework to capture them, before applying the next action.
We compare the snapshot obtained after each interaction with
the initial snapshot (i.e., the page’s original DOM) and the
one collected after the initial wait time. If any modification
is detected, we store the current snapshot and kill the browser
to remove any persistent modifications. When we finish

Table 2: Number of extensions detected in each dataset.

Dataset Extensions Detectable(%)

D1 27,342 2,932 (10.72%)
D2 3,311 1,432 (43.24%)
D3 9,446 1,167 (12.35%)
Total (all extension versions) 5,531
Total (unique extensions) 4,971

exercising an extension with one of the three templates, we
continue our process with the next template and repeat the
aforementioned steps. When all templates have completed,
we start a fresh browser instance to test a new extension.

6 Experimental Evaluation

Here we assess our system’s effectiveness at triggering and
fingerprinting extensions through user-driven interactions.
Datasets. In our analysis, we use three different datasets:
• Dataset_1 (D1): This includes the dataset used in the

Carnus [29] study. Originally it contained 102,482
extensions – after applying our filtering rules (§3) we are
left with 27,342 extensions.

• Dataset_2 (D2): Includes the detected extensions from
Fingerprinting In Style [32]. Originally this dataset
contained 4,446 extensions. To avoid overlap, after our
filtering we also removed extensions with identical versions
included in D1. We ended up with 3,311 extensions, which
also includes extensions with different versions to D1.

• Dataset_3 (D3): In May and June of 2021, we conducted
a crawl of Chrome’s Web Store to collect a more recent
snapshot of the store. After applying our filtering methods
we ended up with 9,446 extensions, from which 2,736 are
newer versions of the extensions included in the other two
datasets, while the remaining 6,710 are new extensions.

We will interchangeably refer to the datasets with their
identifiers and system or study name for the rest of our paper.

System setup. Prior to performing our experiments we
first deployed our honeysite on a popular web service hosting
environment. For our framework, we used two identical
off-the-shelf desktop machines with a 6-core Intel Core
i7-8700, 32GB of RAM, connected to our university’s
network. The PyAutoGui library [9] requires a connected
monitor to perform any interactions; to bypass that limita-
tions we modified our framework and built it into a Docker
Container [1]. To reduce potential browser-configuration
failures (e.g., an extension malfunctioning on a new browser
version due to updated APIs), for each dataset we used a
browser version contemporary to that dataset [3] (versions:
73.0.3683.68, 83.0.4103.39, and 92.0.4515.43).

Overview. Table 2 lists the number of detected extensions
per dataset. For the oldest dataset (D1), our framework
detects ≈11% of the extensions. Interestingly, for D2 the
detection percentage is significantly higher at 43%. This

Table 3: Detectable extensions per behavioral template.

Browser Actions Mouse Actions Keyboard Actions
DOM MSG Total DOM MSG Total DOM MSG Total

D1 2,846 70 2,886 646 15 661 704 6 710
D2 868 29 895 506 6 512 634 - 634
D3 1,096 79 1,175 321 22 341 432 6 438

dataset is formed of extensions that inject CSS into the page;
by leveraging user interactions, we trigger the injection or
an interaction with already injected elements. Finally, in our
most recent dataset, we detect 1,167 (12.35%) extensions,
which is similar to the detection rate for D1.

To gain insights about the different types of interactions
and behaviors, in Table 3 we breakdown the different
templates and detection methods. As detailed in §5, each
fingerprint contains DOM modifications and/or internal
browser communication. However, our system did not trigger
any instances of external communication; this is expected
since extensions load necessary resources when installed or
at run-time. In regards to DOM modifications, the browser
actions have the highest detection rate demonstrating our
framework’s ability to simulate interactions expected by
extensions. Similarly, both keyboard and mouse events
trigger a large number of extensions. This supports our initial
motivation, as extensions often offer on-demand functionality
that is explicitly triggered only once users interact with them.

On the message-modification front, fingerprintable exten-
sions are significantly fewer than the other categories. Only a
small fraction require complex communications between priv-
ileged and unprivileged extension components, resulting in
only a few extensions being fingerprintable through message
exchanges. Upon analyzing the messages exchanged between
extensions and the page, we find that most include actions
that either initialize a DOM modification (e.g., showPopup,
dictionary_window:1) or include the type of interaction
(e.g., x:10,y:24) required by the extension’s functionality.

Modality. Extensions can be fingerprinted through
multiple types of interaction. We found that 80% require
one type of interaction, whereas 15% can be fingerprinted
through two different templates. The remaining 5% can be
fingerprinted by actions from all three behavioral templates.

6.1 Behavioral Templates
Browser actions. 53% of the extensions detected by browser
actions, across all datasets, are triggered by simply clicking on
the extension’s button. Moreover, 15.6% are triggered through
interactions with the extension’s popup page. This demon-
strates the importance of statically analyzing extensions’
manifests and not limiting our analysis to event listeners.

Mouse actions. A detailed breakdown of the interactions
specified in the mouse actions template is presented in Table 4.
We find that the page’s language can be an important factor,
since several extensions are only triggered when a specific
language is present. Language-specific behavior is common

Table 4: Unique set of extensions triggered per mouse action.

Mouse Action D1 D2 D3

Click/Doubleclick Page 4 6 4
Select English Term 20 9 4
Select Non-English Term 5 7 3
Copy-Paste-Scroll 8 5 6
Select Page Element 331 274 189
Right-Click Page 114 108 70
Right-Click Term/Link/Image 28 18 9
Right-Click Page Element 151 85 56

for extensions that offer, among others, dictionary-related and
translation-related functionality. At the same time, the major-
ity of extensions do not include such specializations and are
triggered whenever a user selects an arbitrary word or DOM
element. This behavior is consistent in all three datasets, with
the generic term selection fingerprinting the largest number
of extensions for “left-click” actions (90% on average).

We observe similar behavior for the context-menu function-
ality (three bottom rows of Table 4), where several extensions
are triggered only by selecting the appropriate context-menu
item without specifying any term or element on the page. This
reflects extension functionality that modifies the visited page
without any restrictions on its content. Nonetheless, 9.5%,
8.5%, and 6.6% of the extensions from the three datasets,
respectively, require a specific element to be selected on the
page (e.g., a term, link, or image) to be coupled with the
context-menu action. These are extensions whose functional-
ity is related to selected elements, and thus are not triggered
in any other way. In general, our experimental results confirm
our framework’s ability to fingerprint extensions that require
both simple as well as complex chains of user interactions.

Keyboard actions. Figure 2 shows the distribution of
different types of key events that trigger extensions. The
Hotkeys types 1,2,3 denote a combination of a key-character
with one, two, or three special keys (i.e., ctrl, alt, shift).
Our results show that single keystrokes and Hotkeys-2 have a
high frequency of occurrences across all datasets, indicating
that developers prefer the adoption of simple key shortcuts
over more complicated combinations that users are likelier
to mistype or forget. However, we detected an instance of
an extension that employs 7 different single keystrokes and
Hotkeys to provide users functionality. Finally, we also found
extensions that rely on complex triggering using 3 Hotkeys
(ctrl-alt-shift-<character>). Interestingly, the major-
ity are not triggered by actions from the other templates.

Comparison to prior work. Prior work has explored dif-
ferent ways of detecting browser extensions, using behav-
ioral modifications [29] and style modifications [32]. To
better understand the capabilities of our newly introduced
technique, we compare our detected extensions with the two
previous methods. When comparing with Carnus [29], we
only use the behavior-based detections (i.e., DOM, inter and
intra communications); we do not include WAR-based detec-

 0

 10

 20

 30

 40

 50

 60

Single

Repetitive

Hotkeys
1

Hotkeys
2

Hotkeys
3

O
c
c
u

re
n

c
e

s
 (

%
)

D1

D2

D3

Figure 2: Types of keyboard events that trigger extensions.

tions in our comparison, since Firefox already defends against
them [24] and Chrome recently introduced a new access-
control mechanism for limiting the exposure of resources
to specific pages [16]. Since we did not have access to the
complete dataset of Fingerprinting in Style [32] for our experi-
ment, we follow the authors’ approach and compute the upper
bound of the potentially fingerprintable extensions. Specifi-
cally, for each dataset we count the number of extensions that
inject CSS in pages, as denoted in their manifests. An exten-
sion that does not inject CSS rules cannot, by definition, be fin-
gerprinted via custom CSS properties. For the rest of our anal-
ysis we will use these subsets for any additional comparisons.

We are able to detect 2,932 extensions (2.8%) from the
entire D1 dataset compared to 6,381(6.2%) detected by Car-
nus, and 7,048 (6.8%) that could potentially be detected by
Fingerprinting In Style due to injected CSS. However, 64% of
our detected extensions are “invisible” to Carnus, and 63% to
Fingerprinting in Style, while 45% are not detectable by any
of these methods. Similarly, we compare the detection for the
D3 dataset, where we fingerprint 1,167 extensions (12.35%)
while Fingerprinting In Style can detect at most 2,933 (31%);
again, 45% of these extensions are only detected by our frame-
work. It is worth noting that the extensions that are only fin-
gerprintable by our system are highly dynamic and modify the
page only after user interaction. The other methods only detect
extensions modifications passively by observing the DOM
and, thus, these dynamic extensions are invisible to them.

In total, we are able to uniquely fingerprint 1,820 unique
extensions in datasets D1 and D3 that any of the approaches
would miss. Overall, our results demonstrate that our newly
proposed user-interaction-based fingerprinting technique is
a powerful addition to existing techniques as it significantly
expands coverage for previously-undetectable extensions.

6.2 Popularity & Longitudinal Analysis

Detected extensions types, prevalence & popularity. In
order to classify the fingerprintable extensions, we categorize
them based on their type as provided by the extension store.
For each dataset, the most popular category is “Productivity”,
which is expected since different extensions fall under this
category (e.g., translation and navigation functionalities). A

detailed overview of the extensions’ categories and popularity
can be found in the Appendix A.

To gain more insight, we also calculate their relative
popularity based on the number of installations. Specifically,
we calculate the popularity for the 2,932 detected extensions
of D1 and compare it with those fingerprinted by Carnus,
by Fingerprinting in Style, and extensions not detected by
any method. The extensions detected by our method have
been installed by 11,048 users on average, while for Carnus
and Fingerprinting in Style the popularity is 6,775 and 9,462
respectively. For the remaining undetected extensions, their
average number of downloads is 7,133. While this supports
prior findings by Karami et al. [29] that popular extensions are
likelier to offer more functionality (which can lead to being
fingerprintable), it also indicates that more popular extensions
are also more likely to include dynamic and customizable
functionality that is triggered through user interactions.

Versions. Our most recent dataset (D3) contains 2,736
extensions with newer versions of extensions included in the
older datasets D1 and D2. Of those, ≈ 9% are detected across
all datasets, i.e., remained fingerprintable over the span of
multiple years. Moreover, 5% were not detectable in the older
datasets (i.e., became fingerprintable in more recent versions),
and 6% were only detectable in older datasets (i.e., stopped
being fingerprintable). This is due to extensions modifying
their intended behavior or aspects of their functionality. We
manually inspected 50 randomly selected extensions, and
found that 32 either modified their source code or specified
the “permissions” or “externaly_connectable” entries in their
manifest so as to only run on specific domains. Also, 14
extensions offer the same functionality but without modifying
the DOM (e.g., using the browser’s popup window). Finally,
four extensions offer completely different functionality and
changed their behavior in the most recent version. In general,
whenever an extension updates, the fingerprinting-derived
signatures for that extension may also need to be updated.
This is true for the attacks presented in this paper as well
as for all prior techniques (web-accessible resources, DOM
modifications, etc.) that use some form of a side-channel to
infer the presence of an extension.

It is worth noting that 15% of the newly detected
extensions belong to the Accessibility category, which
could potentially allow the inference of sensitive user
characteristics. Our results indicate that an extension’s
fingerprintability is fairly stable over time and only a small
number of extensions modify their functionality across
versions in a way that affects that aspect of their behavior.

6.3 System and Attack Performance

Dynamic analysis. In Figure 3 we present the total time in
seconds required by each template in our framework when
dynamically exercising an extension. The mouse and browser
actions templates require the lowest number of interactions,

 0

 0.25

 0.5

 0.75

 1

 10 100

E
x
te

n
s
io

n
s
 (

C
D

F
)

Execution Time (sec) - logscale

Browser Actions
Mouse Actions

Key Actions
Total

Figure 3: Performance for the different interaction templates.

which is reflected in their execution times: for 90% of the ex-
tensions, triggering events can be dispatched and evaluated in
less than 10 seconds. A longer execution time is expected for
the key events since we need to trigger multiple keys which
leads to a significantly larger number of potential key combi-
nations. For the majority of extensions, keyboard interactions
require approximately 2 minutes. Overall, our framework
requires less than 200 seconds to complete testing the interac-
tions of all three templates against an extension. Note that this
is a one-time cost which only needs to be repeated whenever
an extension is updated. The increased overhead for ≈5%
of the extensions is the result of system’s overhead due to the
parallelization of docker containers, browser overhead, and
system I/O operations. In summary, our system’s performance
is suitable for large-scale extension analysis, with multiple
opportunities for further optimization via additional paral-
lelization and the data-driven removal of events that rarely
lead to DOM changes (e.g., the removal of keyboard combina-
tions that did not trigger any extensions in our experiments).

Attack: Page-simulated events. In our analysis we
detailed the different types of interactions and user behaviors
that result in the successful triggering of extensions and their
subsequent fingerprinting. Here, we draw attention to the
fact that mouse events and keyboard events can also be
simulated by the page (obviously, we cannot simulate the
right click functionality of the context-menu item from the
mouse actions template since this is a browser-controlled
interface). More specifically, left-click and keyboard inter-
actions (all key combinations including the copy and paste
functionality) can be simulated by specifically crafted events
that replicate user interaction. The JavaScript framework of
Dispatch Event can be used to initialize different types of
events that are targeted to specific event listeners [6]. For
example, a click event is created and dispatched (fired) on
a specific page element after its call. Using this API, one
can craft artificial events that replicate user interaction to
trigger extensions without the user actually interacting with
the page. In practice, we can include various simulated events

 0

 100

 200

 300

 400

 500

 5 10 15 20

D
e
te

c
ti
o
n
 T

im
e
 (

m
s
)

Extensions

Figure 4: Detecting different subsets of installed extensions.

in our honeypage and attempt to trigger a specific subset of
extensions requiring such interactions.

Since events that are typically initiated by users can also
be dispatched via JavaScript, browser vendors have included
a special property in the Event interface that can be used for
verifying the provenance of an event. Specifically, each event
carries with it a read-only, isTrusted property [5], indicating
whether the event resulted from a user action or whether it
was dispatched through JavaScript. The same property is also
available through jQuery’s original Event function and
similarly distinguishes user events from script events.

Extension vulnerability. We perform the following experi-
ment to identify the extensions that a page can trigger through
simulated actions. First, we include all the event listeners
related to the appropriate mouse and keyboard events in our
honeypage (i.e., events shown in Table 1). After that, we visit
our honeypage with the extensions found to be triggered by
mouse or keyboard actions, perform again the actions that
have previously triggered each one of them, and log all the
events captured by the event listeners. Since a user action
may generate multiple events, which activate different event
listeners, we need to artificially trigger and dispatch all these
events when simulating the user interaction through the page.
For instance, the user action of clicking the mouse button fires
the click, mousedown and mouseup events. While some
extensions may be triggered by one of these events, others
may be get triggered by a different one. As such, for us to
accurately simulate user actions through the page’s JavaScript,
we captured how users’ actions trigger all relevant events.

Finally, after identifying all the events that correspond
to the actions triggering each one of the extensions, we
modify our honeypage to dispatch these events automatically
from within the page. We visit the modified version of
the honeysite with a browser that has the aforementioned
extensions installed, and check whether the events dispatched
from the page trigger the extensions’ functionality.

From the 2,234 extensions that are triggered by actions that
can be simulated through JavaScript, we successfully trigger
1,513 (67%). Specifically, 88% of the extensions that require

mouse interactions and 65% of those requiring keyboard
interactions were triggered successfully. As expected, the
percentage is higher for the mouse events since the trusted
flag is more commonly used for key events. Our results
demonstrate that, for the majority of extensions, invasive
pages can simulate user actions and deterministically identify
the corresponding extensions without depending on users’
behavior. Finally, a detailed overview of the vulnerable
extensions’ categories be found in the Appendix A.

Attack performance. To assess our attack feasibility in a
realistic scenario, we measure the time that a page needs for
detecting N=1,...,20 extensions. Due to the variance of trig-
gers across extensions, we randomly select extensions that
leverage different types of interactions (mouse and keyboard).
We include a script that performs the needed type of inter-
actions in the page, which starts executing after the browser
fires the window.onload event. The fingerprinting script then
fires a user-action-simulating event and waits until there is a
DOM modification before proceeding to the next event, while
logging all times corresponding to these events. We used the
Performance API to measure the time difference, with the
starting point being before calling the dispatch function and
the end being after the comparison between the DOM snap-
shots. Since we use different subsets of extensions, we mea-
sure the total time required to detect each subset of extensions
and report it accordingly. Moreover, to collect a representative
set of measurements, we repeat this experiment 50 times.

Figure 4 shows the results for all sets of installed exten-
sions. As expected, there is a positive relationship between
the number of installed extensions and the time required to
fire all the appropriate user-simulating events and detecting
the corresponding DOM changes. Even in the extreme case of
a user having installed 20 extensions (Starov and Nikiforakis
reported that the average user installs 4.8 extensions [48]),
the entirety of the action-triggering and fingerprinting process
takes less than 0.5 seconds. As we showed in §6.1, 90% of the
mouse-triggered extensions require a generic term selection,
while 88% of the keyboard-triggered extensions require
either single keystrokes or a combination of two special keys.

In a real-world deployment, the attacker does not need
to simulate all the available interactions since many of them
do not trigger any extension, and a page would include a
substantially larger number of emulated events that target as
many extensions as possible. In our performance evaluation
where we leverage unique combinations of events, a single
combination triggers one extension in less than 6 ms.
Subsequently, to trigger all the combinations of the 1,513
extensions that we detect through page-simulated events,
the page would require less than 40 seconds for firing the
events and detecting the modifications. This is practical since
it is lower than the average time that users spend on a page
(62 seconds) [17]. Finally, an attacker can apply different
strategies to optimize the detection process and significantly

reduce detection time (e.g., sending the most common events
first or only targeting specific extensions of interest).

Attack Stealthiness. We need to consider two scenarios:
(i) users’ organic actions, and (ii) the page simulating user
interactions. In the first case, our technique is completely
stealthy as the interactions are performed by the user and we
only detect the resulting changes. In the case of simulated
interactions, keyboard events are invisible since there is no
visual effect on the page (thus, matching the stealthiness of
prior techniques). For mouse interactions, some are invisible
(e.g., clicking) while others have a small visual effect
(e.g., text highlighting). Additionally, attackers can employ
techniques like tab-nabbing [19], to detect that the user has
moved focus to a different tab before simulating these events,
in which case the user would not witness the simulated mouse
events. A demonstration of our attack is available at [10].

7 Countermeasure and Discussion

Here we present our defense and further discuss our attack.
Countermeasure. We develop a tool for extension devel-

opers that allows them to retroactively fortify their extensions
against pages that simulate user actions. Our tool introduces
appropriate safeguards in the extension’s code without
affecting its functionality or the user’s browsing experience.

Specifically, we build upon our static analysis tool (§3.1)
and the list of event listeners that can be misused by pages
(§6.3), and create an extensive list of all mouse and keyboard
event listeners. Given the extension’s content-script source
code, we inject a function at the beginning of the source
file that will be executed first. Our function overrides the
addEventListener function located in the prototype of the
EventTarget interface. Listing 3 in the Appendix B provides
an example of our strategy. We first check if the argument on
the addEventListener is one of the mouse or key events; if we
detect such an argument we subsequently verify the origin
of the event and reject events that are not generated by users.
If no such event is detected, the event listener is not affected
and execution proceeds as expected. We manually verified
that our approach works correctly on 50 randomly selected
extensions by correctly handling both user-generated and
page-simulated events without functionality being affected.

Extension obfuscation. A limitation of our static analysis
process (§3.1) is that in cases of heavily obfuscated scripts
that employ sophisticated obfuscation and minification
techniques, it might generate incomplete ASTs. However, this
does not ultimately affect our attack’s effectiveness, as during
our exercising process every extension is tested against all
mouse and keyboard action templates. These templates were
generated based on the results of the static analysis process
as well as the corresponding developer documentation for
completeness. As such, our dynamic extension exercising
provides a comprehensive assessment and is not affected by
issues during the generation of a given extension’s AST.

8 Related Work

Users’ increasing demand for online privacy, which resulted
in significant efforts by the community and browser vendors
for preventing cookie-based tracking, has also led to the emer-
gence of stateless tracking and browser fingerprinting tech-
niques. A large body of prior work has explored various as-
pects of browser fingerprinting and demonstrated the feasibil-
ity of such techniques [14,15,18,20,23,25,30,31,37–39,52].

More recently, extension fingerprinting has caught the
attention of the research community as a new fingerprinting
vector. Over the last few years, several works have explored
extension fingerprinting, proposed various extension enumer-
ation techniques and countermeasures, and demonstrated how
the users’ list of installed extensions can enable the inference
of sensitive user information [26, 29, 32, 43, 44, 47, 48, 50, 51].

In one of the first works in the area of extension finger-
printing, Sjösten et al. [44] demonstrated how websites can
detect the presence of extensions in the user’s browser based
on the Web Accessible Resources (WARs) that these expose.
Gulyas et al. [26] used the WAR-based technique from [44]
and conducted a large-scale study on the uniqueness of users
that visited their website. They found that they can uniquely
identify 54.86% of the users that have at least one extension
installed. In a different line of work, Sanchez-Rola et
al. [43], as well as Van Goethem and Joosen [51], proposed a
timing-based side-channel attack for detecting the presence of
extensions. Specifically, they issue a request for accessing an
extension’s non-existent resource and measure the time that
it takes for the browser to respond. The response takes longer
in the case where the extension is present, as the browser first
parses the manifest to determine if the resource is accessible.

The works that are most closely related to ours are those
that explore behavior-based extension fingerprinting. In
the first study in this area, Starov and Nikiforakis [48]
showed that extensions can be detected based on the
DOM modifications that they perform to the visited page.
Furthermore, by surveying 854 users, they also found that
many users tend to install unique sets of extensions, thus
becoming uniquely identifiable. Karami et al. [29] developed
Carnus, a framework that employs both static and dynamic
analysis for the generation of extensions’ behavioral-based
fingerprinting signatures in an automated fashion. Moreover,
they explored how the detection of extensions can lead to the
inference of sensitive information (e.g., ethnicity, religion).

Trickel et al. [50] proposed CloakX, a defense that
diversifies the extensions’ behavioral fingerprints to prevent
detectability. More specifically, it substitutes the injected
DOM elements’ identifiers and class names, while also insert-
ing random tags in the page as noise. However, this approach
cannot prevent detectability for the majority of extensions
that are fingerprinted by Carnus [29]. In another work, Starov
et al. [47] investigated whether the extensions’ behavior
and page modifications, that in turn make these extensions

fingerprintable, are needed for their intended functionality.
Similarly to Karami et al.’s [29], this work also accounts for
extensions that are fingerprintable due to the messages they
exchange. Finally, Laperdrix et al. [32] has recently proposed
an extension fingerprinting technique that detects extensions
based on the style sheets that these inject in the visited page.
Using this technique, the authors of [32] were able to uniquely
identify 4,446 extensions, from which 1,074 (24%) have not
been fingerprinted by any previously proposed techniques.

All prior work only considered behaviors that extensions
exhibit automatically and by default did not take into account
the dynamic of user interactions. To the best of our knowl-
edge, our work is the first that incorporates user interactions
and attempts to actively trigger extensions’ functionalities,
aiming to make them exhibit fingerprintable behaviors.

9 Conclusion

More than a decade has passed since the seminal works of
Mayer [36] and Eckersley [20], and yet browser fingerprinting
remains an open problem. The fingerprinting of browser exten-
sions is particularly concerning since, in addition to offering
bits of entropy, they also reveal sensitive personal and socioe-
conomic characteristics of the users who chose to install them.
In this paper, we drew attention to a limitation that has been
common to all prior research on the fingerprinting of browser
extensions. Namely, we showed that prior work has ignored
the aspect of users interacting with browser extensions and
how these interactions can be abused to fingerprint extensions.
Through the use of static and dynamic analyses, we were
able to take advantage of user interactions to fingerprint 4,971
extensions, including more than a thousand extensions that
remained invisible to prior fingerprinting methods. Moreover,
we demonstrated that due to developer error, the majority
(67%) of extensions that are triggered by mouse or keyboard
events can be fingerprinted via artificial user actions that the
page itself can generate, as opposed to requiring a user’s
unwitting help. Finally, to at least partially ameliorate this
common developer mistake, we proposed a tool that can add
appropriate event-provenance checks wherever they are miss-
ing. We hope that future research into browser fingerprinting
will take user-interactions into account, both in terms of an at-
tacker’s capabilities, as well as in proposed countermeasures.

Acknowledgements: We would like to thank the anonymous
reviewers and our shepherd Anupam Das for their valuable
feedback. This work was supported by the National Science
Foundation under grants CNS-1934597, CNS-1941617,
and CNS-2126654 as well as the office of Naval Research
under grant N00014-20-1-2720. Any opinions, findings,
conclusions, or recommendations expressed herein are those
of the authors, and do not necessarily reflect those of the NSF
or the ONR.

References

[1] Accelerate how you build, share, and run modern appli-
cations. https://www.docker.com/.

[2] Chrome keyboard shortcuts. https://support.
google.com/chrome/answer/157179?hl=en&co=
GENIE.Platform%3DDesktop#zippy=.

[3] ChromeDriver - WebDriver for Chrome. hhttps://
chromedriver.chromium.org/downloads.

[4] Esprima - ECMAScript parsing infrastructure for multi-
purpose analysis. https://esprima.org/.

[5] Event: isTrusted . https://developer.mozilla.
org/en-US/docs/Web/API/Event/isTrusted.

[6] EventTarget : dispatchEvent. https://developer.
mozilla.org/en-US/docs/Web/API/EventTarget/
dispatchEvent.

[7] Keyboard events. https://developer.mozilla.
org/en-US/docs/Web/API/Element#keyboard_
events.

[8] Mouse events. https://developer.mozilla.org/
en-US/docs/Web/API/Element#mouse_events.

[9] PyAutoGUI : cross-platform GUI automation Python
module. https://pyautogui.readthedocs.io/en/
latest/#.

[10] Repository for the artifacts and defense mechanism
of our attack. https://github.com/kostassolo/
dangers-of-human-touch.

[11] Selenium is a suite of tools for automating web browsers.
https://www.selenium.dev/.

[12] Using the Performance API. https://developer.
mozilla.org/en-US/docs/Web/API/Performance_
API/Using_the_Performance_API.

[13] Gunes Acar, Christian Eubank, Steven Englehardt,
Marc Juarez, Arvind Narayanan, and Claudia Diaz.
The web never forgets: Persistent tracking mechanisms
in the wild. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security,
pages 674–689, 2014.

[14] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia
Diaz, Seda Gürses, Frank Piessens, and Bart Preneel.
Fpdetective: dusting the web for fingerprinters. In Pro-
ceedings of the ACM SIGSAC conference on Computer
& communications security, pages 1129–1140, 2013.

[15] Yinzhi Cao, Song Li, and Erik Wijmans. ((cross))-
browser fingerprinting via os and hardware level
features. In NDSS, 2017.

[16] Chrome. Manifest - web accessible resources. https:
//developer.chrome.com/docs/extensions/mv3/
manifest/web_accessible_resources/.

[17] Contentsquare. 2020 digital experience bench-
mark.behavioral benchmarks based on 7bn user
sessions to help you beat kpis and win at digital expe-
rience. Technical report, Technical report. Available at:
https://go.contentsquare.com/hubfs/eBooks/20202020.

[18] Anupam Das, Gunes Acar, Nikita Borisov, and Amogh
Pradeep. The web’s sixth sense: A study of scripts
accessing smartphone sensors. In Proceedings of ACM
CCS, 2018.

[19] Philippe De Ryck, Nick Nikiforakis, Lieven Desmet,
and Wouter Joosen. Tabshots: Client-side detection
of tabnabbing attacks. In Proceedings of the 8th ACM
SIGSAC symposium on Information, computer and
communications security, pages 447–456, 2013.

[20] Peter Eckersley. How unique is your web browser? In
Proceedings of the 10th International Conference on
Privacy Enhancing Technologies, 2010.

[21] Steven Englehardt and Arthur Edelstein.
Firefox 85 Cracks Down on Supercookies.
https://blog.mozilla.org/security/2021/
01/26/supercookie-protections/, 2021.

[22] Steven Englehardt et al. Automated discovery of
privacy violations on the web. 2018.

[23] Steven Englehardt and Arvind Narayanan. Online
tracking: A 1-million-site measurement and analysis.
In Proceedings of ACM CCS, 2016.

[24] Firefox. web_accessible_resources. https:
//developer.mozilla.org/en-US/docs/Mozilla/
Add-ons/WebExtensions/manifest.json/web_
accessible_resources.

[25] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit
Baudry. Hiding in the crowd: an analysis of the
effectiveness of browser fingerprinting at large scale.
In Proceedings of the world wide web conference, pages
309–318, 2018.

[26] Gabor Gyorgy Gulyas, Doliere Francis Somé, Nataliia
Bielova, and Claude Castelluccia. To extend or not to
extend: on the uniqueness of browser extensions and
web logins. In Proceedings of the Workshop on Privacy
in the Electronic Society, pages 14–27. ACM, 2018.

[27] Artur Janc and Lukasz Olejnik. Web browser history
detection as a real-world privacy threat. In European
Symposium on Research in Computer Security, pages
215–231. Springer, 2010.

https://www.docker.com/
https://support.google.com/chrome/answer/157179?hl=en&co=GENIE.Platform%3DDesktop#zippy=
https://support.google.com/chrome/answer/157179?hl=en&co=GENIE.Platform%3DDesktop#zippy=
https://support.google.com/chrome/answer/157179?hl=en&co=GENIE.Platform%3DDesktop#zippy=
hhttps://chromedriver.chromium.org/downloads
hhttps://chromedriver.chromium.org/downloads
https://esprima.org/
https://developer.mozilla.org/en-US/docs/Web/API/Event/isTrusted
https://developer.mozilla.org/en-US/docs/Web/API/Event/isTrusted
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/dispatchEvent
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/dispatchEvent
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/dispatchEvent
https://developer.mozilla.org/en-US/docs/Web/API/Element#keyboard_events
https://developer.mozilla.org/en-US/docs/Web/API/Element#keyboard_events
https://developer.mozilla.org/en-US/docs/Web/API/Element#keyboard_events
https://developer.mozilla.org/en-US/docs/Web/API/Element#mouse_events
https://developer.mozilla.org/en-US/docs/Web/API/Element#mouse_events
https://pyautogui.readthedocs.io/en/latest/#
https://pyautogui.readthedocs.io/en/latest/#
https://github.com/kostassolo/dangers-of-human-touch
https://github.com/kostassolo/dangers-of-human-touch
https://www.selenium.dev/
https://developer.mozilla.org/en-US/docs/Web/API/Performance_API/Using_the_Performance_API
https://developer.mozilla.org/en-US/docs/Web/API/Performance_API/Using_the_Performance_API
https://developer.mozilla.org/en-US/docs/Web/API/Performance_API/Using_the_Performance_API
https://developer.chrome.com/docs/extensions/mv3/manifest/web_accessible_resources/
https://developer.chrome.com/docs/extensions/mv3/manifest/web_accessible_resources/
https://developer.chrome.com/docs/extensions/mv3/manifest/web_accessible_resources/
https://blog.mozilla.org/security/2021/01/26/supercookie-protections/
https://blog.mozilla.org/security/2021/01/26/supercookie-protections/
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/web_accessible_resources
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/web_accessible_resources
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/web_accessible_resources
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/web_accessible_resources

[28] Soroush Karami, Panagiotis Ilia, and Jason Polakis.
Awakening the web’s sleeper agents: Misusing service
workers for privacy leakage. In Network and Distributed
System Security Symposium (NDSS). The Internet
Society, 2021.

[29] Soroush Karami, Panagiotis Ilia, Konstantinos Solomos,
and Jason Polakis. Carnus: Exploring the privacy threats
of browser extension fingerprinting. In Proceedings
of the Symposium on Network and Distributed System
Security (NDSS), 2020.

[30] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and
Gildas Avoine. Browser fingerprinting: A survey. ACM
Transactions on the Web (TWEB), 14(2):1–33, 2020.

[31] Pierre Laperdrix, Walter Rudametkin, and Benoit
Baudry. Beauty and the beast: Diverting modern web
browsers to build unique browser fingerprints. In
IEEE Symposium on Security and Privacy (SP), pages
878–894. IEEE, 2016.

[32] Pierre Laperdrix, Oleksii Starov, Quan Chen, Alexan-
dros Kapravelos, and Nick Nikiforakis. Fingerprinting
in style: Detecting browser extensions via injected
style sheets. In 30th {USENIX} Security Symposium
({USENIX} Security 21), 2021.

[33] Sangho Lee, Hyungsub Kim, and Jong Kim. Identifying
cross-origin resource status using application cache. In
NDSS, 2015.

[34] Adam Lerner, Anna Kornfeld Simpson, Tadayoshi
Kohno, and Franziska Roesner. Internet jones and the
raiders of the lost trackers: An archaeological study
of web tracking from 1996 to 2016. In 25th USENIX
Security Symposium (USENIX Security), 2016.

[35] Xu Lin, Panagiotis Ilia, and Jason Polakis. Fill in the
blanks: Empirical analysis of the privacy threats of
browser form autofill. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications
Security (CCS).

[36] Jonathan R Mayer. “any person... a pamphleteer”: In-
ternet anonymity in the age of web 2.0. Undergraduate
Senior Thesis, Princeton University, page 85, 2009.

[37] Vikas Mishra, Pierre Laperdrix, Antoine Vastel, Walter
Rudametkin, Romain Rouvoy, and Martin Lopatka.
Don’t count me out: On the relevance of ip address
in the tracking ecosystem. In Proceedings of The Web
Conference, pages 808–815, 2020.

[38] Keaton Mowery and Hovav Shacham. Pixel perfect:
Fingerprinting canvas in html5. pages 1–12, 2012.

[39] Martin Mulazzani, Philipp Reschl, Markus Huber,
Manuel Leithner, Sebastian Schrittwieser, Edgar Weippl,
and FC Wien. Fast and reliable browser identification
with javascript engine fingerprinting. In Web 2.0 Work-
shop on Security and Privacy (W2SP), volume 5, 2013.

[40] Lily Hay Newman. Wired - the fractured future of
browser privacy, 2020. https://www.wired.com/
story/chrome-firefox-edge-browser-privacy/.

[41] Nick Nikiforakis, Alexandros Kapravelos, Wouter
Joosen, Christopher Kruegel, Frank Piessens, and Gio-
vanni Vigna. Cookieless monster: Exploring the ecosys-
tem of web-based device fingerprinting. In IEEE Sym-
posium on Security and Privacy, pages 541–555, 2013.

[42] Valentino Rizzo, Stefano Traverso, and Marco Mellia.
Unveiling web fingerprinting in the wild via code
mining and machine learning. Proceedings on Privacy
Enhancing Technologies, (1):43–63, 2021.

[43] Iskander Sanchez-Rola, Igor Santos, and Davide
Balzarotti. Extension Breakdown: Security Analysis
of Browsers Extension Resources Control Policies. In
Proceedings of the 26rd USENIX Security Symposium
(USENIX Security), 2017.

[44] Alexander Sjösten, Steven Van Acker, and Andrei
Sabelfeld. Discovering browser extensions via web
accessible resources. In Proceedings of the Seventh
ACM on Conference on Data and Application Security
and Privacy, pages 329–336, 2017.

[45] Konstantinos Solomos, John Kristoff, Chris Kanich,
and Jason Polakis. Tales of favicons and caches:
Persistent tracking in modern browsers. In Network and
Distributed System Security Symposium (NDSS). The
Internet Society, 2021.

[46] Doliere Francis Somé. Empoweb: empowering web
applications with browser extensions. In Symposium on
Security and Privacy (SP), pages 227–245. IEEE, 2019.

[47] Oleksii Starov, Pierre Laperdrix, Alexandros Kaprav-
elos, and Nick Nikiforakis. Unnecessarily identifiable:
Quantifying the fingerprintability of browser extensions
due to bloat. In The World Wide Web Conference, pages
3244–3250, 2019.

[48] Oleksii Starov and Nick Nikiforakis. Xhound: Quan-
tifying the fingerprintability of browser extensions. In
IEEE Symposium on Security and Privacy (SP), pages
941–956. IEEE, 2017.

[49] David Temkin. Google Ads - Charting a course
towards a more privacy-first web. https:
//blog.google/products/ads-commerce/a-
more-privacy-first-web/, 2021.

https://www.wired.com/story/chrome-firefox-edge-browser-privacy/
https://www.wired.com/story/chrome-firefox-edge-browser-privacy/
https://blog.google/products/ads-commerce/a-more-privacy-first-web/
https://blog.google/products/ads-commerce/a-more-privacy-first-web/
https://blog.google/products/ads-commerce/a-more-privacy-first-web/

[50] Erik Trickel, Oleksii Starov, Alexandros Kapravelos,
Nick Nikiforakis, and Adam Doupé. Everyone is differ-
ent: Client-side diversification for defending against ex-
tension fingerprinting. In 28th {USENIX} Security Sym-
posium ({USENIX} Security), pages 1679–1696, 2019.

[51] Tom Van Goethem and Wouter Joosen. One side-
channel to bring them all and in the darkness bind
them: Associating isolated browsing sessions. In
11th {USENIX} Workshop on Offensive Technologies
({WOOT}), 2017.

[52] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin,
and Romain Rouvoy. Fp-stalker: Tracking browser
fingerprint evolutions. In IEEE Symposium on Security
and Privacy (SP), pages 728–741. IEEE, 2018.

[53] John Wilander. WebKit - Intelligent Tracking Pre-
vention (ITP). https://webkit.org/blog/9521/
intelligent-tracking-prevention-2-3/, 2019.

A Appendix: Extension Statistics

Here we present additional details and statistics about the
extensions detected by our system.

 0

 10

 20

 30

 40

 50

Productivity

Fun
Developer Tools

Accessibility

Search Tools

Social M
edia

E
x
te

n
s
io

n
s
 (

%
) D1

D2

D3

Figure 5: Categories of extensions for the corresponding
datasets.

In Figure 5 we present the main category types of the
detected extensions. The most popular category is that of
“Productivity" with ≈ 40% of the extensions of each dataset.
The next most popular category is “Fun" with ≈ 15% of the
extensions. Also, ≈15% of the extensions are categorized
as “Developer Tools” and “Accessibility”.

Figure 6 reports the total number of installations for the
extensions of the three datasets in our analysis. As can be
seen, 50% of the extensions of the D1 and D2 have at least
100 downloads, while half of the extensions of D3 have
approximately 1,000 downloads. Moreover, 10% of the
extensions of all datasets are installed by 10,000 users, and
the most popular extensions have over 2 Million users.

Figure 7 reports the category types of the extensions that
are fingerprintable by our techniques. Similarly to the overall

0

0.25

0.5

0.75

1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

E
x
te

n
s
io

n
s
 (

C
D

F
)

Installations (logscale)

D1 D2 D3

Figure 6: Number of installations for all the extensions in our
datasets.

 0

 10

 20

 30

 40

 50

Productivity

Fun
Search Tools

Accessibility

Developer Tools

Social M
edia

E
x
te

n
s
io

n
s
 (

%
)

Figure 7: Categories of extensions that are fingerprinted by
our system.

breakdown of extensions as shown Figure 5, “Productivity”
and “Fun” are the most common categories for vulnerable
extensions. Also, ≈15% of the vulnerable extensions catego-
rized as “Search Tools” and ≈10% are under the category of
“Accessibility”. Finally, the least popular category is “Social
Media”. One difference compared to the overall distribution
of extensions found in Figure 5, is that of “Developer Tools”
which are less likely to be fingerprintable.

https://webkit.org/blog/9521/intelligent-tracking-prevention-2-3/
https://webkit.org/blog/9521/intelligent-tracking-prevention-2-3/

B Appendix: Countermeasure

Listing 3 shows an example of our proposed countermeasure
tool for automatically injecting event-provenance checks in
extensions’ source code.

1 // All the mouse and key events
2 Events = new Set(['click', <...>])
3 orig = EventTarget.prototype.addEventListener;
4 EventTarget

.prototype.addEventListener = function(){
5 if (Events.has(arguments[0])){
6 let handler = arguments[1]
7 arguments[1] = function(){
8 let event = arguments[0];
9 //event's origin

10 if (event.isTrusted == false)
11 return;
12 else
13 return handler.apply(this,arguments)}}
14 return orig.apply(this, arguments);}

Listing 3: Code for verifying events’ origin by overriding the
addEventListener function.

	Introduction
	Background and Threat Model
	Methodology
	Preparatory Phase
	User Interaction Templates

	Implementation Details
	Experimental Setup
	Experimental Evaluation
	Behavioral Templates
	Popularity & Longitudinal Analysis
	System and Attack Performance

	Countermeasure and Discussion
	Related Work
	Conclusion
	Appendix: Extension Statistics
	Appendix: Countermeasure

