
DEMACRO: Defense against Malicious
Cross-domain Requests

Sebastian Lekies1, Nick Nikiforakis2, Walter Tighzert1, Frank Piessens2, and
Martin Johns1

1 SAP Research, Germany
firstname.lastname@sap.com

2 IBBT-DistriNet, KU Leuven, 3001 Leuven, Belgium
firstname.lastname@cs.kuleuven.be

Abstract. In the constant evolution of the Web, the simple always gives
way to the more complex. Static webpages with click-through dialogues
are becoming more and more obsolete and in their place, asynchronous
JavaScript requests, Web mash-ups and proprietary plug-ins with the
ability to conduct cross-domain requests shape the modern user experi-
ence. Three recent studies showed that a significant number of Web appli-
cations implement poor cross-domain policies allowing malicious domains
to embed Flash and Silverlight applets which can conduct arbitrary re-
quests to these Web applications under the identity of the visiting user.
In this paper, we confirm the findings of the aforementioned studies and
we design DEMACRO, a client-side defense mechanism which detects
potentially malicious cross-domain requests and de-authenticates them
by removing existing session credentials. Our system requires no training
or user interaction and imposes minimal performance overhead on the
user’s browser.

1 Introduction

Since the release of the World Wide Web by CERN, the online world has dramat-
ically changed. In this ever-expanding and ever-changing Web, old technologies
give way to new ones with more features enabling developers to constantly en-
rich their Web applications and provide more content to users. This evolution
of the Web is one of the main reasons that the Internet, once accessible by an
elite few, is now populated by almost 2 billion users3.

Two of the most popular platforms for providing enriched Web content are
Adobe Flash and Microsoft Silverlight.Through their APIs, developers can serve
data (e.g. music, video and online games) in ways that couldn’t be traditionally
achieved through open standards, such as HTML. The latest statistics show a
95% and 61% market penetration of Flash and Silverlight respectively, attesting
towards the platforms’ popularity and longevity [17].

Unfortunately, history and experience have shown that functional expansion
and attack-surface expansion go hand in hand. Flash, due to its high market

3 http://www.internetworldstats.com

penetration, is a common target for attackers. The last few years have been
a showcase of “zero-day” Flash vulnerabilities where attackers used memory
corruption bugs to eventually execute arbitrary code on a victim’s machine [1].

Apart from direct attacks against these platforms, attackers have devised
ways of using legitimate Flash and Silverlight functionality to conduct attacks
against Web applications that were previously impossible. One of the features
shared by these two platforms is their ability to generate client-side cross-domain
requests and fetch content from many remote locations. In general, this is an opt-
in feature which requires the presence of a policy configuration. However, in case
that a site deploys an insecure wildcard policy, this policy allows adversaries
to conduct a range of attacks, such as leakage of sensitive user information,
circumvention of CSRF countermeasures and session hijacking. Already, in 2007
a practical attack against Google users surfaced, where the attacker could upload
an insecure cross-domain policy file to Google Docs and use it to obtain cross-
domain permissions in the rest of Google’s services [18]. Even though the security
implications of cross-domain configurations are considered to be well understood,
three recent studies [13, 14, 9] showed that a significant percentage of websites
still utilize highly insecure policies, thus, exposing their user base to potential
client-side cross-domain attacks.

To mitigate this threat, we present DEMACRO, a client-side defense mech-
anism which can protect users against malicious cross-domain requests. Our
system automatically identifies insecure configurations and reliably disarms po-
tentially harmful HTTP requests through removing existing authentication in-
formation. Our system requires no training, is transparent to both the Web
server and the user and operates solely on the client-side without any reliance
to trusted third-parties.

The key contributions of this paper are as follows:

– To demonstrate the significance of the topic matter, we provide a practical
confirmation of this class of Web application attacks through the analysis of
two vulnerable high-profile websites.

– We introduce a novel client-side protection approach that reliably protects
end-users against misconfigured cross-domain policies/applets by removing
authentication information from potentially malicious situations.

– We report on an implementation of our approach in the form of a Fire-
fox extension called DEMACRO. In a practical evaluation we show that
DEMACRO reliably protects against the outlined attacks while only imply-
ing a negligible performance overhead.

The rest of this paper is structured as follows: Section 2 provides a brief
overview of cross-domain requests and their specific implementations. Section 3
discusses the security implications of misconfigured cross-domain policies, fol-
lowed by two novel real-world use cases in Section 4. Section 5 presents in detail
the design and implementation of DEMACRO. Section 6 presents an evalua-
tion of our defense mechanism, Section 7 discusses related work and we finally
conclude in Section 8.

2 Technical background

In this section we will give a brief overview of client-side cross-domain requests.

2.1 The Same-Origin Policy

The Same-Origin Policy (SOP) [19] is the main client-side security policy of the
Web. In essence, the SOP enforces that JavaScript running in the Web browser
is only allowed access to resources that share the same origin as the script itself.
In this context, the origin of a resource is defined by the characteristics of the
URL (namely: protocol, domain, and port) it is associated with, hence, confining
the capabilities of the script to its own application. The SOP governs the access
both to local, i.e., within the browser, as well as remote resources, i.e., network
locations. In consequence, a JavaScript script can only directly create HTTP
requests to URLs that satisfy the policy’s same-origin requirements. Lastly, note
that the SOP is not restricted to JavaScript since other browser technologies,
such as Flash and Silverlight, enforce the same policy.

2.2 Client-side Cross-Domain Requests

Despite its usefulness, SOP places limits on modern Web 2.0 functionality, e.g.,
in the case of Web mash-ups which dynamically aggregate content using cross-
domain sources. While in some scenarios the aggregation of content can happen
on the server-side, the lack of client-side credentials and potential network restric-
tions could result in a less-functional and less-personalized mash-up. In order to
accommodate this need of fetching resources from multiple sources at the client-
side, Flash introduced the necessary functionality to make controlled client-side
cross-domain requests. Following Flash’s example, Silverlight and newer versions
of JavaScript (using CORS [25]) added similar functionality to their APIs. For
the remainder of this paper we will focus on Flash’s approach as it is currently
the most wide spread technique [14]. Furthermore, the different techniques are
very similar so that the described approach can easily be transferred to these
technologies.

2.3 An Opt-in Relaxation of the SOP

As we will illustrate in Section 3, a general permission of cross-domain requests
would result in a plethora of dangerous scenarios. To prevent these scenarios,
Adobe designed cross-domain requests as a server-side opt-in feature. A website
that desires its content to be fetched by remote Flash applets has to imple-
ment and deploy a cross-domain policy which states who is allowed to fetch
content from it in a white-list fashion. This policy comes in form of an XML
file (crossdomain.xml) which must be placed at the root folder of the server
(see Listing 1 for an example). The policy language allows the website to be
very explicit as to the allowed domains (e.g. www.a.net) as well as less explicit

through the use of wildcards (e.g. *.a.net). Unfortunately the wildcard can be
used by itself, in which case all domains are allowed to initiate cross-domain
requests and fetch content from the server deploying this policy. While this can
be useful in case of well-defined public content and APIs, in many cases it can
be misused by attackers to perform a range of attacks against users.

Listing 1 Exemplary crossdomain.xml file

<cross -domain -policy >

<site -control

permitted -cross -domain -policies="master -only" />

<allow -access -from domain="a.net"/>

</cross -domain -policy >

2.4 Client-side cross-domain requests with Flash

Figure 1 gives an overview of how Flash conducts client-side cross-domain re-
quests in a legitimate case. (The general scenario is equivalent for Silverlight and
only differs in the name and the structure of its policy file). If the domain a.net

would like to fetch data from the domain b.net in the user’s authentication con-
text, it has to include an applet file that implements cross-domain capabilities.
This file can either present the fetched data directly or pass it on to JavaScript
served by a.net for further processing. As already explained earlier, b.net has to
white-list all domains that are allowed to conduct cross-domain requests. There-
fore, b.net hosts a cross-domain policy named crossdomain.xml in it’s root
folder. (So the url for the policy-file is http://b.net/crossdomain.xml). If the
Flash applet now tries to conduct a requests towards b.net, the Flash Player
downloads the cross-domain policy from b.net and checks whether a.net is
white-listed or not. If so, the request is granted and available cookies are at-
tached to the request. If a.net is not white-listed the request is blocked by the
Flash Player in the running browser.

3 Security Implications of Client-Side Cross-Domain
Requests

In this section we present two classes of attacks that can be leveraged by an
adversary to steal private data or to circumvent CSRF protection mechanisms.

3.1 Vulnerable Scenario 1: Insecure Policy

For this section we consider the same general setup as presented in section 2.4.
This time however, b.net hosts personalized, access-controlled data on its do-
main and at the same time allows cross-domain requests from any other domain

http://a.net
Browser

http://b.net

Cookie for b.net
CrossDomain.swf

(a.net)

http://a.net

Crossdomain.xml

Fig. 1: General Use Case

http://hacker.net
Browser

Cookie for a.net

http://a.nethttp://hacker.net

CrossDomain.swf
(a.net)

JavaScript
(hacker.net)

Fig. 2: Vulnerable Flash Proxy

by white-listing a wildcard (“*”) in its cross-domain policy. As a result any
Flash/Silverlight applet is allowed to conduct arbitrary requests towards b.net
with the user’s session cookie attached to it. Thus, an adversary is able to craft
an applet file that can access the personalized, access-controlled data on b.net.
The last step for the attacker is to lure users into visiting a website that em-
beds the malicious file. This could either be achieved through social networks,
social engineering or through the abuse of other vulnerabilities such as cross-site
scripting on vulnerable sites. The more popular the website hosting the insecure
policy is, the more chances the attacker has that the users who end up visiting
the malicious domain will provide him with authenticated sessions.

3.2 Vulnerable Scenario 2: Insecure Flash Proxies

As we have recently shown [10], an insecure cross-domain policy is not the
only condition which enables adversaries to conduct the attacks outlined in
Section 3.1: The second misuse case results from improper use of Flash or
Silverlight applets. As stated in Section 2.4, an applet is able to exchange
data with JavaScript for further processing. For security reasons, communica-
tion between JavaScript and Flash/Silverlight applets is also restricted to the
same domain. The reason for this is that, as opposed to other embedded con-
tent such as JavaScript, embedded Flash files keep their origin. Consequently,
JavaScript located on a.net cannot communicate with an applet served by
b.net even if that is embedded in a.net. But, as cross-domain communica-
tion is also sometimes desirable in this setup, an applet file can explicitly offer
communication capabilities to JavaScript served by a remote domain. There-
fore, Flash utilizes a white-listing approach by offering the ActionScript direc-
tive System.security.allowDomain(domain). With this directive, an applet

file can explicitly allow cross-domain communication from a certain domain or
white-list all domains by using a wildcard.

We have shown that these wildcards are also misused in practice: Several
popular off-the-shelf cross-domain Flash proxies include such wildcard directives,
and thus, allow uncontrolled cross-domain JavaScript-to-Flash communication.
If such a Flash applet offers cross-domain network capabilities and at the same
time grants control over these capabilities to cross-domain JavaScript, an at-
tacker can conduct requests in the name of the website serving the applet file.

Figure 2 shows the general setup for this attack. An adversary sets-up a web-
site hacker.net that includes JavaScript capable of communicating with a Flash
applet served by a.net. This applet includes a directive that allows communica-
tion from JavaScript served by any other domain. Thus, the attacker is able to
instruct the Flash applet to conduct arbitrary requests in the name of a.net. If
JavaScript from hacker.net now conducts a request towards a.net via the vul-
nerable applet, the request itself is not happening cross-domain as a.net is the
sender as well as the receiver. Therefore, the Flash Player will grant any request
without even checking if there is a cross-domain policy in place at a.net. Conse-
quently, the attacker can conduct cross-domain requests and read the response
as if a.net would host a wildcard cross-domain policy. Furthermore, the adver-
sary is also able to misuse existing trust relationships of other domains towards
a.net. So, if other domains white-list a.net in their cross-domain policy, the at-
tacker can also conduct arbitrary cross-domain requests towards those websites
by tunneling them through the vulnerable proxy located on a.net (please refer
to [10] for details concerning this class of attacks).

3.3 Resulting malicious capabilities

Based on the presented use and misuse cases we can deduce the following mali-
cious capabilities that an attacker is able to gain.

1. Leakage of Sensitive Information: As an adversary is able to conduct arbi-
trary requests towards a vulnerable website and read the corresponding re-
sponses, he is able to leak any information that is accessible via the HTML of
that site including information that is bound to the user’s session id. Thus,
an attacker is able to steal sensitive and private information [8].

2. Circumvention of Cross-Site Request Forgery Protection: In order to protect
Web applications from cross-site request forgery attacks, many websites uti-
lize a nonce-based approach [4] in which a random and unguessable nonce is
included into every form of a Web page. A state changing request towards a
website is only granted if a user has requested the form before and included
the nonce into the state changing request. The main security assumption of
such an approach is that no one else other than the user is able to access
the nonce and thus, nobody else is able to conduct state changing requests.
As client-side cross-domain requests allow an adversary to read the response
of a request, an attacker is able to extract the secret nonce and thus bypass
CSRF protections.

3. Session Hijacking: Given the fact that an adversary is able to initiate HTTP
requests carrying the victim’s authentication credentials, he is essentially
able to conduct a session hijacking attack (similar to the one performed
through XSS vulnerabilities). As long as the victim remains on the Web page
embedding the malicious applet, the attacker can chain a series of HTTP
requests to execute complex actions on any vulnerable Web application under
the victim’s identity. The credentials can be used by an attacker either in
an automated fashion (e.g. a standard set of requests towards vulnerable
targets) or interactively, by turning the victim in an unwilling proxy and
browsing vulnerable Web applications under the victim’s IP address and
credentials (see Section 6.1).

3.4 General Risk Assessment

Since the first study on the usage of cross-domain policies conducted by Jeremiah
Grossman in 2006 [7], the implementation of cross-domain policies for Flash
and Silverlight applets is becoming more and more popular. While Grossman
repeated his experiment in 2008 and detected cross-domain policies at 26% of
the top 500 websites, the latest experiments show that the adoption of policies
for the same set of websites has risen to 52% [14]. Furthermore, the amount of
wildcard policies rose from 7% in 2008 up to 11% in 2011. Those figures clearly
show that client-side cross-domain requests are of growing importance.

Three recent studies [9, 13, 14] investigated the security implications of cross-
domain policies deployed in the wild and all came to the conclusion that cross-
domain mechanisms are widely misused. Among the various experiments, one
of the studies [14] investigated the Alexa top one million websites and found
82,052 Flash policies, from which 15,060 were found using wildcard policies in
combination with authentication tracking and, thus, vulnerable to the range of
attacks presented in Section 3.

4 Real-World Vulnerabilities

To provide a practical perspective on the topic matter, we present in this Section
two previously undocumented, real-world cases that show the vulnerabilities
and the corresponding malicious capabilities. These two websites are only two
examples of thousands of vulnerable targets. However, the popularity and the
large user base of these two websites show that even high profile sites are not
always aware of the risks imposed by the insecure usage of client-side cross-
domain functionality.

4.1 Deal-of-the-day Website: Insecure wildcard policy4

The vulnerable website features daily deals to about 70 million users world-wide.
At the time of this writing, it was ranked on position 309 of the Alexa Top Sites.

4 anonymized for publication

When we started investigating cross-domain security issues on the website, a
crossdomain.xml file was5 present, which granted any site in the WWW arbitrary
cross-domain communication privileges (see Listing 2). This policy can be seen
as a worst case example as it renders void all restrictions implied by the Same-
Origin Policy and any CSRF protection. On the same domain under which the
policy was served, personal user profiles and deal registration mechanisms were
available. Hence, an attacker was able to steal any information provided via
the HTML user interface. As a proof-of-concept we implemented and tested
an exploit which was able to extract any personal information6. Furthermore,
it was possible to register a user for any deal on the website as CSRF tokens
included into every form of the website could be extracted by a malicious Flash
or Silverlight applet.

Listing 2 The website’s crossdomain.xml file

<cross -domain -policy >

<site -control permitted -cross -domain -policies="all" />

<allow -access -from domain="*" />

<allow -http -request -headers -from domain="*" headers="*" />

</cross -domain -policy >

4.2 Popular sportswear manufacturer: Vulnerable Flash proxy7

As discussed in Section 3, even without a wildcard cross-domain policy, an at-
tacker is able to conduct arbitrary cross-domain requests under certain circum-
stances. For this to be possible, a website needs to host a Flash or Silverlight
file which is vulnerable to the second misuse case presented in Section 3.2.

We found such a vulnerable flash proxy on a Web site of a popular sportswear
manufacturer that offers an online store for its products. Although the website’s
cross-domain policy only includes non-wildcard entries, it hosts a vulnerable
Flash proxy which can be misused to circumvent the restrictions implied by the
Same-Origin Policy.

Besides leaking private data and circumventing CSRF protections, the vul-
nerability can be exploited even further by an attacker to misuse existing trust
relationships of the sportswear manufacturer with other websites. As the vulnera-
ble Flash proxy enables an adversary to conduct client-side cross-domain requests
in the name of the company, other websites which white-list the sportswear man-
ufacturer’s domain in their cross-domain policies are also exposed to attacks.
During our tests, we found 8 other websites containing such a white-list entry.

5 The vulnerability has been reported and fixed in the meantime.
6 Notice: We only extracted our own personal information and, hence, did not attack

any third person
7 anonymized for publication

5 Client-Side Detection and Mitigation of Malicious
Cross-Domain Requests

In Section 3.4 we showed that plug-in-based cross-domain techniques are widely
used in an insecure fashion and thus users are constantly exposed to risks result-
ing from improper configuration of cross-domain mechanisms (see Section 3 for
details). In order to safeguard end-users from these risks we propose DEMACRO,
a client-side protection mechanism which is able to detect and mitigate malicious
plug-in-based cross-domain requests.

5.1 High-level Overview

The general mechanism of our approach functions as follows: The tool observes
every request that is created within the user’s browser. If a request targets a
cross-domain resource and is

caused by a plugin-based applet, the tool checks whether the request could
potentially be insecure. This is done by examining the request’s execution con-
text to detect the two misuse cases presented in Section 3: For one, the cor-
responding cross-domain policy is retrieved and checked for insecure wildcards.
Furthermore, the causing applet is examined, if it exposes client-side proxy func-
tionality. If one of these conditions is met, the mechanism removes all authenti-
cation information contained in the request. This way, the tool robustly protects
the user against insecurely configured cross-domain mechanisms. Furthermore,
as the request itself is not blocked, there is only little risk of breaking legitimate
functionality.

While our system can, in principle, be implemented in all modern browsers,
we chose to implement our prototype as a Mozilla Firefox extension and thus
the implementation details, wherever these are present, are specific to Firefox’s
APIs.

5.2 Disarming potentially malicious Cross-Domain Requests

A cross-domain request conducted by a plug-in is not necessarily malicious as
there are a lot of legitimate use cases for client-side cross-domain requests. In
order to avoid breaking the intended functionality but still protecting users from
attacks, it is crucial to eliminate malicious requests while permitting legitimate
ones. As described in Section 3.1 the most vulnerable websites are those that
make use of a wildcard policy and host access-controlled, personalized data on
the same domain; a practice that is strongly discouraged by Adobe [2]. Hence,
we regard this practice as an anti-pattern that carelessly exposes users to high
risks. Therefore, we define a potentially malicious request as one that carries
access credentials in the form of session cookies or HTTP authentication headers
towards a domain that serves a wildcard policy. When the extension detects such
a request, it disarms it by stripping session cookies and authentication headers.
As the actual request is not blocked, the extension does not break legitimate
application but only avoids personalized data to appear in the response.

Furthermore, DEMACRO is able to detect attacks against vulnerable Flash
proxies as presented in Section 3.2. If a page on a.net embeds an applet file
served by b.net and conducts a same-domain request towards b.net user cre-
dentials are also stripped by our extension. The rationale here is that a Flash-
proxy would be deployed on a website so that the website itself can use it rather
than allowing any third party domain to embed it and use it.

5.3 Detailed Detection Algorithm

While DEMACRO is active within the browser it observes any request that
occurs. Before applying actual detection and mitigation techniques, DEMACRO
conducts pre-filtering to tell plugin- and non-plugin-based requests apart

. If a plugin-based request is observed, DEMACRO needs to check whether
the request was caused by a Silverlight or a Flash Applet, in order to download
the corresponding cross-domain policy file

. With the information in the policy file DEMACRO is now able to reveal
the nature of a request by assessing the following values:

1. Embedding Domain: The domain that serves the HTML document which
embeds the Flash or Silverlight file

2. Origin Domain: The domain that serves the Silverlight or Flash file and is
thus used by the corresponding plug-in as the origin of the request

3. Target Domain: The domain that serves the cross-domain policy and is the
target for the request

4. Cross-domain whitelist: The list of domains (including wildcard entries)
that are allowed to send cross-domain requests to the target domain. This
information is received either from the Silverlight or Flash cross-domain
policy.

Depending on the scenario, the three domains (1,2,3) can either be totally dis-
tinct, identical or anything in between. By comparing these values DEMACRO
is able to detect if a request was conducted across domain boundaries or if a
vulnerable proxy situation is present. For the former, the extension additionally
checks whether the policy includes a wildcard. If such a potentially malicious sit-
uation is detected the extension removes existing HTTP authentication headers
or session cookies from the request. Figure 3 summarizes our detection algorithm.

In the remainder of this section, we provide technical details how DEMACRO
handles the tasks of request interception, plugin identification, and session iden-
tifier detection.

Requests interception and redirect tracing: In order to identify plug-in-
based requests, DEMACRO has to examine each request at several points in
time. Firefox offers several different possibilities to intercept HTTP requests,
but none of them alone is sufficient for our purpose. Therefore, we leveraged the
capabilities of the nsIContentPolicy and the nsIObserver interfaces.

isPluginReq	 ||	 isRedirect	

Conduct	 Request	

No	

Yes	

OriginDomain	 ==	 TargetDomain	

No	 (cross-‐domain	 request)	

isWildcardRequest	

yes	

No	

Yes	 (potenAally	 malicous)	

Remove	 user	 credenAals	

OriginDomain	 ==	 EmbeddingDomain	

Yes	

No	 (return	 to	 sender)	

Fig. 3: Detection and Mitigation Algorithm

The nsIContentPolicy interface offers a method called shouldLoad which is
called each time an HTTP request is initiated and before the actual HTTPChannel
object is created8. Thereby, the method returns a boolean value indicating
whether a request should be conducted by Firefox or not. Since we do not want
to block a request but only modify its header fields, this method cannot fully
serve our purpose. But as it is the only method that receives the url of the
webpage and the DOM object that caused the request, we need to intercept
page requests here and detect the origin of a request. A request originating from
either a HTMLObjectElement or from a HTMLEmbedElement is categorized as a
plug-in-based request.

The nsIObserver interface offers the observe method which is called at
three different points in time:

1. http-on-modify-request: Called each time before an HTTP request is sent.
2. http-on-examine-response: Called each time before the response is passed

back to the caller.
3. http-on-examine-cache-response: Called instead of http-on-examine-

response when the response is completely read from cache.

Thereby, the observe method receives an HTTPChannel object as a param-
eter which can be used to modify request as well as response header fields.
If the extension detects a potentially malicious request, it can thus disarm
it by stripping existing session information in Cookie fields and by removing
Authentication header fields.

To prevent an attacker from hiding cross-domain requests behind local redi-
rects, the extension also needs to keep track of any redirect resulting from a

8 the HTTPChannel object is used to conduct the request and read the response

plug-in-based request. This is also done in the observe method at the http-on-

examine-response event. If a 3xx status code of a plug-in-based request is de-
tected, the redirect location will be stored for examination of follow-up requests.

During experimentation with DEMACRO we noticed that Web applications
tend to initiate a new session if an existing session identifier is not present in
a user’s cookie headers. More precisely, if a session identifier never reaches the
application, the application emits a Set-Cookie header which includes a new
session identifier. If this header reaches the user’s browser it will override ex-
isting cookies with the same name for the corresponding domain and therefore
the user’s authenticated session is replaced by an unauthenticated one. As this
can obviously lead to undesired side-effects and possible denial of service at-
tacks, DEMACRO additionally examines each response of potentially malicious
requests and removes Set-Cookie headers before allowing the response to be
interpreted by the browser.

Plug-in identification: In order for DEMACRO to investigate the correct
cross-domain policy, our system must detect whether the underlying request
was caused by a Silverlight or by a Flash applet. Since the HTTP request itself
does not carry any information about its caller, we developed a mechanism for
Firefox to distinguish between Flash and Silverlight requests.

As stated above, the only point in time where we have access to the request-
causing DOM element is the call of the shouldLoad method in the nsIContent-
Policy interface. But, due to the fact that Silverlight and Flash files can both be
embedded into a page by using either an HTMLObjectElement or an HTMLEmbed-

Element, we need to examine the exact syntax used to embed those files for each
element. By testing standard and less-standard ways of embedding an applet to
a page, we resulted to the detection mechanism shown in Listing 3. In case the
detection mechanism fails, the extension simply requests both policies, in order
to prevent an attacker who is trying to circumvent our extension by using an
obscure method to embed his malicious files.

Web Framework Name of Session variable

PHP phpsessid

ASP/ASP.NET asp.net sessionid
aspsessionid

JSP x-jspsessionid
jsessionid

Table 1: Default session naming for the most common Web frameworks

Session-Cookie detection: As described earlier, it is necessary to differen-
tiate between session information and non-session information and strip the

Listing 3 Object and Embed detection (pseudocode)

function detectPlugin(HTMLElement elem){

var type = elem.getAttribute("type");

var data = elem.getAttribute("data");

var src = elem.getAttribute("src");

switch(type.startsWith){

case "application/x-silverlight": return flash;

case "application/x-shockwave -flash": return silverlight;

default:

}

if(data=="data:application/x-silverlight")

return silverlight;

if(data.endsWith(".swf")) return flash;

switch(src.endsWith){

case ".swf": return flash;

case ".xap": return silverlight;

default:

}

return -1;

}

former while preserving the latter. The reasoning behind this decision is that
while transmitting session identifiers over applet-originating cross-domain re-
quests can lead to attacks against users, non-session values should be allowed to
be transmitted since they can be part of a legitimate Web application’s logic.

DEMACRO utilizes a techniques initially described by Nikiforakis et al. [16]
and Tang et al. [23] that attempts to identify session identifiers at the client-side.
The approach consists of two pillars. The first one is based on a dictionary check
and the second one on measuring the information entropy of a cookie value:

The dictionary check is founded on the observation that well known Web
frameworks use well-defined names for session cookies - see Table 1. By recog-
nizing these values we are able to unambiguously classify such cookies as session
identifiers. Furthermore, in order to detect custom naming of session identifiers,
we characterize a value as a session cookie if it’s name contains the string “sess”
and if the value itself includes letters as well as numbers and is more than ten
characters long. We believe that this is a reasonable assumption since all the
session identifiers generated by the aforementioned frameworks fall within this
categorization.

The second pillar is based on the fact that session identifiers are long ran-
dom strings. Thus their entropy, i.e., the number of bits necessary to represent

them, is by nature higher than non-random strings. DEMACRO first compares
a cookie variable’s name with its dictionary and if the values are not located it
then calculates the entropy of the variable’s value. If the result exceeds a cer-
tain threshold (acquired by observing the resulting entropy of session identifiers
generated by the PHP programming framework), the value is characterized as a
session identifier and is removed from the outgoing request.

This session identifier technique works without the assistance of Web servers
and offers excellent detection capabilities with a false negatives rate of ~3% and
a false-positive ratio of ~0.8% [16].

6 Evaluation

6.1 Security

In this section we present a security evaluation of DEMACRO. In order to test
its effectiveness, we used it against MalaRIA [15], a malicious Flash/Silverlight
exploit tool that conducts Man-In-The-Middle attacks by having a user visit
a malicious website. MalaRIA tunnels attacker’s requests through the victim’s
browser thus making cross-domain requests through the victim’s IP address and
with the victim’s cookies. We chose Joomla, a popular Content Management
System, as our victim application mainly due to Joomla’s high market penetra-
tion [5]. Joomla was installed on a host with a wild-card cross-domain policy,
allowing all other domains to communicate with it through cross-domain re-
quests.

Our victim logged in to Joomla and then visited the attacker’s site which
launched the malicious proxy. The attacker, situated at a different browser, could
now initiate arbitrary cross-domain requests to our Joomla installation. Without
our countermeasure, the victim’s browser added the victim’s session cookie to
the outgoing requests, thus authenticating the attacker as the logged-in user.
We repeated the experiment with DEMACRO activated. This time, the plug-in
detected the cross-domain requests and since the Joomla-hosting domain im-
plemented a weak cross-domain policy, it stripped the session-identifier before
forwarding the requests. This means that while the attacker could still browse
the Joomla website through the victim’s browser, he was no longer identified as
the logged-in user.

Apart from the security evaluation with existing and publicly available ex-
ploits, we also implemented several test-cases of our own. We implemented Flash
and Silverlight applets to test our system against all possible ways of conducting
cross-domain requests across the two platforms and we also implemented sev-
eral vulnerable Flash and Silverlight applets to test for the second misuse case
(Section 3.2). In all cases, DEMACRO detected the malicious cross-domain re-
quests and removed the authentication information. Lastly we tested our system
against the exploits we developed for the real-world use cases (See Section 4)
and were able to successfully prevent the attacks in both cases.

Request Type #Requests

Non-Cross-Domain 77,988 (98.6%)

Safe Cross-Domain 414 (0.52%)

Unsafe Cross-Domain
Without Cookies 387 (0.49%)

With Session Cookies 275 (0.34%)
With Non-Session Cookies 29 (0.05%)

Total 79,093 (100%)

Table 2: Nature of requests observed by DEMACRO for Alexa Top 1k websites

6.2 Compatibility

In order to test DEMACRO ’s practical ability to stop potentially malicious cross-
domain requests while preserving normal functionality, we conducted a survey of
the Alexa top 1,000 websites. We used the Selenium IDE 9 to instrument Firefox
to automatically visit these sites twice. The rationale behind the two runs is the
following: In the first run, DEMACRO was deactivated and the sites and ad
banners were populating cookies to our browser. In the second run, DEMACRO
was enabled and reacting to all the insecure cross-domain requests by stripping-
off their session cookies that were placed in the browser during the first run. The
results of the second run are summarized in Table 2.

In total, we were able to observe 79,093 HTTP requests, of which 1,105
were conducted by plug-ins across domain boundaries. 691 of the requests were
considered insecure by DEMACRO and thus our system deemed it necessary to
remove any session cookies found in these requests. Of the 691, approximately
half of them did not contain cookies thus these requests were not modified. For
the rest, DEMACRO identified at least one session-like value in 275 requests
which it removed before allowing the requests to proceed.

In order to find out more about the nature of the insecure requests that
DEMACRO modified, we further investigated their intended usage: The 275
requests were conducted by a total of 68 domains. We inspected the domains
manually and discovered that almost half of the requests where performed by
Flash advertising banners and the rest by video players, image galleries and
other generic flash applications. We viewed the websites first with DEMACRO
de-activated and then activated and we noticed that in all but one cases, the
applications were loading correctly and displaying the expected content. The one
case that did not work, was a Flash advertisement that was no-longer functional
when session cookies were stripped away from its requests.

One can make many observations based on the aforementioned results. First
of all, we observe that the vast majority of requests do not originate from plugins
which experimentally verifies the commonly-held belief that most of the Web’s
content is served over non-plugin technologies. Another interesting observation is

9 http://seleniumhq.org/projects/ide/

1,500 C.D. requests Firefox FF & DEMACRO Overhead/req.

JavaScript 27.107 28.335 0.00082

Flash 184 210 0.00173

Table 3: Best and worst-case microbenchmarks (in seconds) of cross-domain requests

that 50% of the cross-domain plugin-originating requests are towards hosts that
implement, purposefully or accidentally, weak cross-domain policies. Finally, we
believe that the experiments show that DEMACRO can protect against cross-
domain attacks without negatively affecting, neither the user’s browsing experi-
ence nor a website’s legitimate content.

6.3 Performance

Regardless of the benefits of a security solution, if the overhead that its use
imposes is too large, many users will avoid deploying it. In order to evaluate the
performance of our countermeasure we measured the time needed to perform
a large number of cross-domain requests when a) issued by JavaScript and b)
issued by a Flash applet.

JavaScript Cross-domain requests: This experiment presents the min-
imum overhead that our extension will add to a user’s browser. It consists of
an HTML page which includes JavaScript code to fetch 1,500 images from a
different domain than the one the page is hosted on. Both domains as well as
the browsing user are situated on the same local network to avoid unpredictable
network inconsistencies. The requests originating from JavaScript, while cross-
domain, are not part of the attack surface explored in this paper and are thus
not inspected by our system. The experiment was repeated 5 times and the first
row of Table 3 reports the time needed to fetch all 1,500 images with and without
our protecting system. The overhead that our system imposes is 0.00082 seconds
for each cross-domain request. While this represents the best-case scenario, since
none of the requests need to be checked against weak cross-domain policies, we
believe that this is very close the user’s actual everyday experience where most
of the content served is done so over non-plugins and without crossing domain
boundaries, as shown in Section 6.2.

Flash Cross-domain requests: In this experiment we measure the worst-
case scenario where all requests are cross-domain Flash-originating and thus
need to be checked and processed by our system. We chose to measure “Flash-
Gallery” 10, a Flash-based image gallery that constructs its albums either from
images on the local disk of the webserver or using the public images of a given
user on Flickr.com. Cross-domain accesses occur in the latter case in order for
the applet to fetch the necessary information of each image’s location and finally
the image itself. A feature that made us choose this applet over other Flash-based
image galleries is its pre-emptive loading of all available images before the user

10 http://www.flash-gallery.org/

requests them. Thus, the applet will perform all cross-domain requests needed
without any user interaction.

To avoid the network inconsistencies of actually fetching 500 images from
Flickr, we implemented the necessary subset of Flickr’s protocol to successfully
provide a list of image URIs to the Flash applet, in our own Web application
which we hosted on our local network. Using our own DNS server, we resolved
Flickr.com to the host of our Web application instead of the actual Web service.
This setup, allowed us to avoid unnecessary modifications on the client-side, i.e.
the Flash platform, our plug-in and the Flash applet, and to accurately mea-
sure the imposed worst-case overhead of our solution. According to the current
protocol of Flickr.com, an application first receives a large list of image iden-
tifiers. For each identifier, the applet needs to perform 3 cross-domain requests.
One to receive information about the image, one to fetch the URIs of different
image sizes and finally one to fetch the image itself. We configured our Web
service to return 500 image identifiers which in total correspond to 1,500 cross-
domain requests. Each transfered image had an average size of 128 Kilobytes.
Each experiment was repeated 5 times and we report the average timings.

The second row of Table 3 reports the results of our experiment. Without
any protection mechanisms, the browser fetched and rendered all images in 184
seconds. The reason that made these requests so much slower than the non-
protected JavaScript requests of Section 6.3 is that this time, the images are
loaded into the Flash-plugin and rendered, as part of a functioning interactive
image gallery on the user’s screen. With our system activated, the same task
was accomplished in 210 seconds, adding a 0.00173 seconds overhead to each
plugin-based cross-domain request in order to inspect its origin, the policy of
the remote-server and finally perform any necessary stripping of credentials.

It is necessary to point out that this overhead represents the upper-bound of
overhead that a user will witness in his every-day browsing. In normal circum-
stances, the majority of requests are not initiated by Flash or Silverlight and
thus we believe that the actual overhead will be closer to the one reported in
the previous section. Additionally, since our experiments were conducted on the
local network, any delay that DEMACRO imposes affects the total operation
time much more than requests towards remote Web servers where the round-trip
time of each request will be significantly larger.

7 Related Work

One of the first studies that gave attention to insecure cross-domain policies for
Flash, was conducted by Grossman in 2006 [7]. At the time, 36% of the Alexa
top 100 websites had a cross-domain policy and 6% of them were using insecure
wildcards. Kontaxis et al. [13] recently reported that now more than 60% of
the same set of websites implement a cross-domain policy and the percentage
of insecure wildcard policies has increased to 21%. While we [14] used a more
conservative definition of insecure policies, we also came to the conclusion that
the cross-domain traffic through Flash and Silverlight is a real problem.

To the best of our knowledge this paper presents the first countermeasure
towards this increasingly popular problem. The nature of the problem, i.e. server-
side misconfigurations resulting to poor security, allows for two categories of
approaches. The first approach is at the server-side, where the administrator
of a domain configures the cross-domain policy correctly and thus eliminates
the problem all together. While this is the best solution, it a) depends on an
administrator to realize the problem and implement a secure policy and b) needs
to be repeated by all administrators in all the domains that use cross-domain
policies. Practice has shown that adoption of server-side countermeasures can
be a lengthy and often incomplete process [27]. For these reasons we decided
to focus our attention on the client-side where our system will protect the user
regardless of the security provisions of any given site.

Pure client-side security countermeasures against popular Web application
attacks have in general received much attention due to their attractive “install
once, secure all” nature. Kirda et al. [12] attempt to stop session hijacking at-
tacks conducted through cross-site scripting (XSS) [26] at the client side using
a proxy which blocks requests towards dynamically generated URIs leading to
third-party domains. Nikiforakis et al. [16] and Tang et al. [23] tackle the same
problem through the identification of session identifiers at the client-side and
their subsequent separation from the scripts running in the browser. Vogt et
al. [24] also attempt to prevent the leakage of session identifiers through the
use of static analysis and dynamic data tainting, however Russo et al. [20] have
shown that the identifiers can still be leaked through the use of side channels.

Moving on to Cross-Site Request Forgeries, Johns and Winter [11] propose a
solution where a client-side proxy adds tokens in incoming URLs (based on their
domains) that bind each URL with their originating domain. At each outgoing
request, the domain of the request is checked against the originating domain
and if they don’t match, the requests are stripped from their credentials. De
Ryck et al. [21] extend this system, by moving it into the browser where more
context-information is available. Shahriar and Zulkernine [22] propose a detec-
tion technique where each cross-domain request is checked against the visibility
of the code that originated it in the user’s browser. According to the authors,
legitimate requests will have originated from visible blocks of code (such as a
visible HTML form) instead of hidden code (an invisible auto-submitting form
or JavaScript code). None of the above authors consider cross-domain requests
generated by Flash and Silverlight.

Client-side defense mechanisms have also been used to protect a user’s online
privacy. Egele et al. [6] designed a client-side proxy which allows users to make
explicit decisions as to which personal information gets transmitted to third-
party social network applications. Beato et al. propose a client-side access-control
system for social networks, where the publishing user can select who will get
access to the published information [3].

8 Conclusion

In this paper we have shown that the increasingly popular problem of insecure
Flash/Silverlight cross-domain policies is not just an academic problem, but a
real one. Even high profile sites carelessly expose their users to unnecessary
risks by relying on misconfigured policies and plugin applets. In order to protect
security aware users from malicious cross-domain requests we propose a client-
side detection and prevention mechanism, DEMACRO. DEMACRO observes all
requests that occur within the user’s web browser and checks for potential ma-
licious intent. In this context, we consider a request to be potentially harmful,
if it targets a cross-domain resource on a Web server that deploys an insecure
wildcard policy. In such a case, DEMACRO disarms potentially insecure cross-
domain requests by stripping existing authentication credentials. Furthermore,
DEMACRO is able to prevent the vulnerable proxy attack in which a vulnerable
Flash application is misused to conduct cross-domain requests under a foreign
identity. We examine the practicality of our approach, by implementing and eval-
uating DEMACRO as a Firefox extension. The results of our evaluation suggest
that our system is able to protect against malicious cross-domain requests with
a negligible performance overhead while preserving legitimate functionality.

Acknowledgments: This research was done with the financial support from
the Prevention against Crime Programme of the European Union, the IBBT,
the Research Fund KU Leuven, and the EU-funded FP7 projects NESSoS and
WebSand.

References

1. Adobe. Adobe - security bulletins and advisories.

2. Adobe Systems Inc. Cross-domain policy file specification. http://www.adobe.

com/devnet/articles/crossdomain_policy_file_spec.html, January 2010.

3. F. Beato, M. Kohlweiss, and K. Wouters. Scramble! your social network data.
In Proceedings of the 11th Privacy Enhancing Technologies Symposium (PETS),
2011.

4. J. Burns. Cross Site Request Forgery - An introduction to a common web appli-
cation weakness. Whitepaper, https://www.isecpartners.com/documents/XSRF_
Paper.pdf, 2005.

5. Water and Stone: Open Source CMS Market Share Report, 2010.

6. M. Egele, A. Moser, C. Kruegel, and E. Kirda. Pox: Protecting users from malicious
facebook applications. In Proceedings of the 3rd IEEE International Workshop on
Security in Social Networks (SESOC), pages 288 –294, 2011.

7. J. Grossman. crossdomain.xml statistics. http://jeremiahgrossman.blogspot.

com/2006/10/crossdomainxml-statistics.html.

8. J. Grossman. I used to know what you watched, on
YouTube. [online], http://jeremiahgrossman.blogspot.com/2008/09/

i-used-to-know-what-you-watched-on.html, Accessed in January 2011,
September 2008.

9. D. Jang, A. Venkataraman, G. M. Swaka, and H. Shacham. Analyzing the Cross-
domain Policies of Flash Applications. In Proceedings of the 5th Workshop on Web
2.0 Security and Privacy (W2SP), 2011.

10. M. Johns and S. Lekies. Biting the hand that serves you: A closer look at client-side
flash proxies for cross-domain requests. In Proceedings of the 8th Conference on
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA), 2011.

11. M. Johns and J. Winter. RequestRodeo: Client Side Protection against Session
Riding. In Proceedings of the OWASP Europe 2006 Conference, 2006.

12. E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes: A Client-Side Solution
for Mitigating Cross Site Scripting Attacks. In Security Track of the 21st ACM
Symposium on Applied Computing (SAC), April 2006.

13. G. Kontaxis, D. Antoniades, I. Polakis, and E. P. Markatos. An empirical study on
the security of cross-domain policies in rich internet applications. In Proceedings
of the 4th European Workshop on Systems Security (EUROSEC), 2011.

14. S. Lekies, M. Johns, and W. Tighzert. The state of the cross-domain nation. In
Proceedings of the 5th Workshop on Web 2.0 Security and Privacy (W2SP), 2011.

15. Malaria - i’m in your browser, surfin your webs. http://erlend.oftedal.no/

blog/?blogid=107, 2010.
16. N. Nikiforakis, W. Meert, Y. Younan, M. Johns, and W. Joosen. SessionShield:

Lightweight Protection against Session Hijacking. In Proceedings of the 3rd Inter-
national Symposium on Engineering Secure Software and Systems (ESSoS), 2011.

17. Rich internet application (ria) market share. http://www.statowl.com/custom_

ria_market_penetration.php.
18. B. B. Rios. Cross domain hole caused by google docs. http://xs-sniper.com/

blog/Google-Docs-Cross-Domain-Hole/.
19. J. Ruderman. The Same Origin Policy. [online], http://www.mozilla.org/

projects/security/components/same-origin.html (01/10/06), August 2001.
20. A. Russo, A. Sabelfeld, and A. Chudnov. Tracking Information Flow in Dynamic

Tree Structures. In 14th European Symposium on Research in Computer Security
(ESORICS’09), 2009.

21. P. D. Ryck, L. Desmet, T. Heyman, F. Piessens, and W. Joosen. CsFire: Transpar-
ent Client-Side Mitigation of Malicious Cross-Domain Requests. In Proceedings of
2nd International Symposium on Engineering Secure Software and Systems (ESSoS
’10), pages 18–34, 2010.

22. H. Shahriar and M. Zulkernine. Client-side detection of cross-site request forgery
attacks. In Software Reliability Engineering (ISSRE), 2010 IEEE 21st Interna-
tional Symposium on, pages 358 –367, 2010.

23. S. Tang, N. Dautenhahn, and S. T. King. Fortifying web-based applications auto-
matically. In Proceedings of the 8th ACM Conference on Computer and Commu-
nications Security, 2011.

24. P. Vogt, F. Nentwich, N. Jovanovic, C. Kruegel, E. Kirda, and G. Vigna. Cross Site
Scripting Prevention with Dynamic Data Tainting and Static Analysis. In Pro-
ceedings of the 14th Annual Network and Distributed System Security Symposium
(NDSS ’07), 2007.

25. W3C. Cross-Origin Resource Sharing. http://www.w3.org/TR/cors/.
26. The Cross-site Scripting FAQ. http://www.cgisecurity.com/xss-faq.html.
27. Y. Zhou and D. Evans. Why Aren’t HTTP-only Cookies More Widely Deployed?

In Proceedings of 4th Web 2.0 Security and Privacy Workshop (W2SP ’10), 2010.

