
Where are you takingme?
Understanding Abusive Traffic Distribution Systems

Janos Szurdi
Carnegie Mellon University

Palo Alto Networks
jszurdi@alumni.cmu.edu

Meng Luo
Stony Brook University

meluo@cs.stonybrook.edu

Brian Kondracki
Stony Brook University

bkondracki@cs.stonybrook.edu

Nick Nikiforakis
Stony Brook University

nick@cs.stonybrook.edu

Nicolas Christin
Carnegie Mellon University
nicolasc@andrew.cmu.edu

ABSTRACT
Illicit website owners frequently rely on traffic distribution systems
(TDSs) operated by less-than-scrupulous advertising networks to
acquire user traffic. While researchers have described a number
of case studies on various TDSs or the businesses they serve, we
still lack an understanding of how users are differentiated in these
ecosystems, how different illicit activities frequently leverage the
same advertisement networks and, subsequently, the same mali-
cious advertisers. We design ODIN (Observatory of Dynamic Illicit
ad Networks), the first system to study cloaking, user differentiation
and business integration at the same time in four different types of
traffic sources: typosquatting, copyright-infringing movie stream-
ing, ad-based URL shortening, and illicit online pharmacy websites.

ODIN performed 874,494 scrapes over two months (June 19,
2019–August 24, 2019), posing as six different types of users (e.g.,
mobile, desktop, and crawler) and accumulating over 2TB of data.
We observed 81% more malicious pages compared to using only the
best performing crawl profile by itself. Three of the traffic sources
we study redirect users to the same traffic broker domain names up
to 44% of the time and all of them often expose users to the same
malicious advertisers. Our experiments show that novel cloaking
techniques could decrease by half the number of malicious pages
observed. Worryingly, popular blacklists do not just suffer from the
lack of coverage and delayed detection, but miss the vast majority
of malicious pages targeting mobile users. We use these findings
to design a classifier, which can make precise predictions about the
likelihood of a user being redirected to a malicious advertiser.
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1 INTRODUCTION
Online advertising subsidizes the World Wide Web: ads monetize
user visits and pay for infrastructure. Unsurprisingly, as a lucra-
tive business, online advertising also invites abuse. For instance,
questionable or illicit sites automatically redirect users to advertis-
ers [1, 3, 21, 24, 25, 34, 38, 45, 55] without user consent. Dubious
redirections of visitors also frequently expose them to malicious
content, including deception, phishing, scams and malicious down-
loads [1, 16, 21, 28, 34, 36, 38, 45, 59]. While the research community
has documented a number of abusive practices through specific
case studies [1, 4, 8, 15, 16, 21, 22, 24, 25, 27, 28, 34–36, 38, 45, 49–
51, 55, 58, 59, 63, 66], we still lack a general understanding of how
malicious advertisement ecosystems interact with each other, of the
specific roles different entities assume, and, more generally, of how
different the landscape is, between mobile and desktop web users.

Generally, (legitimate) advertising on the web works as follows.
Websites include content from sources called ad publishers, who
themselves leverage a complex system of advertisement networks
to choose, on-the-fly, which ad (provided by an advertiser) to dis-
play for a given user, during a given browsing session. To maximize
engagement (“clicks”), displayed ads are selected through a combi-
nation of behavioral user profiling and a bidding process among ad-
vertisers based on user profiles. This model is called “pay-per-click”
(PPC) since ad publishers are rewarded as a function of the number
of clicks generated by their website. We refer the reader to Pearce
et al. [41] for an extensive description of the advertising ecosystem.

Clicks require active user participation. A much more aggres-
sive technique is to instead automatically redirect users to a target
destination website – in such a context, ad publishers are compen-
sated through pay-per-redirect (PPR). Both PPR and PPC form the
bedrock of the traffic distribution systems (TDSs) used by advertise-
ment networks to direct traffic to advertisers. PPR, however, is far
more intrusive than PPC, and is frequently observed along with
malicious or abusive behavior [1, 38].

Using terminology from the literature [3, 25], TDSs connect traf-
fic sources—pages visited by users for content (e.g., free movies),
for services (e.g., URL shorteners), or by accident (e.g., typing
mistake)—to destination pages (advertisers). Traffic brokers match
traffic sources (and potentially user profiles) with the highest bid-
ding advertiser. In the PPR model, this often involves a brief visit
to one or more separate websites run by the TDS operators be-
fore reaching the destination page. This entire journey from traffic
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source, to intermediate traffic brokers, to destination (or “landing”)
pages, constitutes a redirection chain.

Importantly and differently from legitimate advertisers, mali-
cious destination page operators are agnostic to the techniques
TDSs use to bring traffic to their websites. Indeed, these malicious
operators are merely customers of the TDSs. These operators’ own
monetization strategies rest on other techniques, such as, deceiving
users into sharing sensitive information, stealing funds, or serving
a malicious or potentially unwanted programs (PUPs).

Contributions. This paper 1) describes a measurement infrastruc-
ture called ODIN (Observatory of Dynamic Illicit ad Networks)
which allows us to compare how campaigns differentiate over mul-
tiple types of users (from different vantage points, using different
browsers, hardware, etc.), 2) presents novel results from at-scale
data collection using ODIN, and 3) introduces possible countermea-
sures based on these findings. While previous studies considered
questionable ads relevant to specific ecosystems, or relying on
specific techniques, the key novelty is in ODIN’s ability to take a
broader view, which enables us to discover how questionable ad-
vertisers perform per-user differentiation to monetize their traffic.

ODIN’s goal is to offer a systematic exploration of various TDSs
used by questionable content providers. To do so, ODIN collects
screenshots, HTTP communications, content and browser logs. We
semi-automatically label 101,926 pages that ODIN collected, and
we use these labels to perform a series of automatic analyses of
page contents to better understand the threats these TDSs pose.

In the past, researchers have either individually studied illicit
traffic sources [1, 25, 30, 35, 38, 45, 55] or focused on a single ma-
licious activity [8, 16, 21, 34, 44, 49]. Expanding this body of work,
we study multiple traffic sources and a wide variety of malice stem-
ming from them. We seed ODIN with four distinct types of traf-
fic sources: (i) “typosquatting sites” [55] (e.g., yotube.com), (ii)
copyright-infringing sites that stream pirated movies [15], (iii) ad-
based URL shortening services that shorten URLs in return for
exposure to potentially malicious ads [38], and (iv) unlicensed on-
line pharmacies [24]. We choose these traffic sources as they are
known to redirect users to malicious or illicit landing pages. At
the same time, previous studies have generally not exhibited much
overlap between these various activities, which allows us to test the
hypothesis whether TDSs are “vertically integrated” (i.e., each crim-
inal coterie uses their own TDS infrastructure) or if they cross-cut
multiple segments. Earlier results [24] hinted at vertical integration,
at least in the pharmaceutical ecosystem; revisiting this finding a
decade later, we discover that vertical integration no longer holds.

The vast majority of papers before 2016 [1, 4, 8, 17, 24, 25, 27,
28, 35, 38, 45, 55, 62, 63, 66] simply did not consider cloaking. Even
after 2016, most papers [15, 19, 21, 22, 34, 49, 58, 59], only accounted
for a couple of aspects of cloaking. ODIN assumes all of the par-
ticipants in the TDS ecosystem are malicious and attempt to cloak
their activities, or evade detection through blocking. Despite this
adversarial landscape, we show that ODIN can successfully recon-
struct redirections. As a side-benefit, ODIN allows us to unearth
a wide variety of cloaking techniques.

Crucially, ODIN emulates a variety of different profiles (web
crawler, desktop users, mobile users) – using a combination of user
emulation and actual mobile hardware – and compare TDS behavior

across these different user profiles. ODIN also relies on various prox-
ying techniques to examine IP address-based differentiation in TDS
responses. We open sourced ODIN on GitHub [18] and make the
collected and labeled data available for researchers upon request.
Results. Using ODIN, we scraped webpages 874,494 times over two
months (June 19, 2019–August 24, 2019), accumulating 2TB of data.
Posing as six different types of users, ODIN finds 81% more mali-
cious and 96% more suspicious landing pages, compared to visiting
pages only using the user profile which experienced themost malice.
We find that mobile users are exclusively targeted with deceptive
surveys and illicit adult content tailored to them. Conversely, desk-
top users are exposed to technical support scam pages and deceptive
downloads that mobile users never see. Our experiments also show
that some state-of-the-art blacklists do not include the vast majority
of malicious destination pages mobile users are exposed to.

From a criminal ecosystem standpoint, we find evidence of TDS
reuse across illicit activities. Some traffic source pairs share 44%
of traffic broker domains they use. TDSs also redirect to the same
kind of landing pages, and nearly half of the different types of
malicious activities we found were present in the typosquatting,
copyright infringing, and the URL shortening ecosystems. Shared
malice includes technical support scams [34, 50], deceptive surveys
[8, 21], deceptive downloads [1, 59], and other scams. At the same
time, certain types of abuse are prominent at only one TDS. For
example, copyright-infringing sites force users’ social media activ-
ities such as tweets and shares. URL shortening services advertise
crypto-currency related scams. Typosquatting domains redirect to
fake identity protection phishing sites.

Miscreants still leverage IP reputation, user agent and the re-
ferrer HTTP header fields to cloak their activity. Additionally, we
observe that most of the malicious entities leverage simple tech-
niques to block or to cloak their activity, but do not appear to use
more advanced techniques such as the detection of mobile phone
emulation or WebRTC-based proxy detection. Comparing results
obtained from a pool of 240 IP addresses with those obtained from a
single vantage point, we find that, in addition to rate limiting, some
TDSs attempt to escape detection by disproportionately redirecting
suspected crawlers like ODIN to benign pages instead of their usual
landing pages, resulting in half as many malicious pages observed.

2 RELATEDWORK
Our paper extends multiple areas of research that have explored
TDSs [16, 27, 28, 36, 50, 51, 59, 66], illicit traffic sources [1, 4, 15, 24,
25, 34, 35, 38, 45, 49, 55, 63] and cloaking [17, 19, 39, 62].
TDSs. Early research of TDSs has focused on malicious advertising
in Alexa top domains [27, 28, 66]. While popular domains might
redirect users to malicious destination pages from time to time,
questionable businesses frequently redirect users to abusive or ma-
licious landing pages. Even though researchers have studied these
potentially dangerous websites [24, 35, 38, 45], there has been no
research on how they constitute together a complex interconnected
network supporting online crime. Closest to our work is research by
Vadrevu and Perdisci [59] that focused on investigating traffic bro-
ker domains to find more malicious destination pages. Conversely,
our goal is to study and compare traffic sources, while quantifying
the effects of user differentiation and cloaking techniques.
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Illicit traffic sources. To gain a clear picture of the malicious
advertisement ecosystem, we study four traffic sources— typosquat-
ting, ad-based URL shortening services, copyright-infringing movie
streamingwebsites, and illicit pharmacies.We selected these sources
based on the diversity of how they attract user traffic.

Typosquatters register misspelled variants of domain names,
such as yotube.com, to profit from users’ typing mistakes. Despite
having been studied for over fifteen years [1, 4, 6, 11, 20, 29, 35,
42, 48, 53–56, 58, 63, 65, 67], typosquatting still occurs, with lit-
tle abatement. Complementary to this body of work, we look at
typosquatting as part of a broader criminal ecosystem. We also
account for the impact of cloaking, as well as focus on how users
are differentiated, and how they end up on malicious pages.

URL shortening services transform complex URLs with user-
friendly shorter variants. Nikiforakis et al. [38] have shown that
third-party ads used in ad-sponsored URL shortening services ex-
pose users to a diverse type of abusive content, including drive-by
downloads, online scams, and illicit adult contents.

Copyright-infringing movie streaming sites offer pirated content
to profit from users intentionally or accidentally clicking on ads
while trying to watch movies. Researchers have focused on the
infrastructure supporting the sharing of pirated content [15], but
have not investigated abuse. Closer to our research, Rafique et al.
[45] studied sport-streaming sites that expose users to malicious
content similar to illicit movie streaming sites. Studying pirated
movie streaming sites gives us a complementary datapoint.

A few studies [24–26, 30, 32, 62] have investigated how unli-
censed online pharmacies acquire traffic, through email spam or
search poisoning finding early evidence of cloaking (e.g., HTTP
header and cookie-based). Interestingly, these studies all suggest
that the unlicensed online pharmaceutical industry appears to be a
relatively “closed” ecosystem, at least in the early 2010s. Traffic bro-
kers serving pharmacies, in particular are (or were) rarely shared
with other businesses. By complementing online pharmacies with
three other traffic sources, we see that while pharmaceuticals are
indeed an outlier, there is a significant amount of overlap between
other types of activities.

Malice on theWeb. Another body of work focused on uncover-
ing different types of malice, such as drive-by-downloads [16, 44],
phishing pages [31, 64], technical support scams [34, 49] or survey
scams [8, 21]. Our research is different in that we consider a wide
variety of abuse in the TDSs we study.

Cloaking. TDS operators and other miscreants often engage in
“cloaking.” In trying to determine how the literature addresses cloak-
ing, we surveyed twenty-three measurement papers [1, 4, 8, 15, 17,
19, 21, 22, 24, 25, 27, 28, 34, 35, 38, 45, 49, 55, 58, 59, 62, 63, 66] that
engage in active crawling of Web content from TDSs, illicit traffic
sources or destination pages.

With the exception of Wang et al. [62], most papers published
before 2016 did not take explicit steps to study or mitigate adversar-
ial cloaking. On the other hand, most papers published after 2016
(and Wang et al. [62]) use a combination of one or more of the six
followingmethods: (i) changing the user-agent, (ii) setting an HTTP
header field, (iii) mitigating browser fingerprinting, (iv) changing
the type of IP address used, (v) rotating through IP addresses to
eschew rate limitation, and (vi) avoiding proxy detection. While

most papers only consider HTTP header based cloaking techniques,
a couple of papers [17, 21, 59] combine multiple defenses. ODIN
combines all of these techniques to mitigate cloaking attempts.

3 DATACOLLECTION: ODIN
Our data collection must fulfill several objectives. The primary goal
is to understand if and how disparate traffic sources are leveraging
the same traffic brokers and cloaking techniques. At the same time,
we cannot exhaustively search for all possible malicious activity on
the web; we thus will have to focus on a subset of possible sources,
that must be diverse and representative. Second, our infrastructure
must be resilient to cloaking and evasions by TDS operators.

Main Orchestrator

Internet

Target Creation and 
Selection

Typosquatting Module

Search Module

Copyright Module

List Module

Customized Mitm Proxy

Desktop 
Crawler

Emulated 
Phone

Real 
Phone

Analysis 
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DNS 
Module

Multiprocessing Crawling Scheduler
Feature 
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Config File

Squid ProxiesSquid Proxies

DB
Database Module

Figure 1: High-level overview of ODIN.

To meet these objectives, we designed the collection infrastruc-
ture represented in Figure 1. For each traffic source we study (ty-
posquatting, ad-based URL shortening, illicit movie streaming, and
illicit pharmacy sites) we have a separate module to select URLs that
ODIN visits. These URLs are then ordered by a scheduler to avoid
being detected by TDSs that are looking for multiple visits from
the same IP address in quick succession. In an effort to determine
differences in treatment between user types, each URL is visited by
(a combination of) various collection agents: three desktop crawlers,
an agent mimicking a Google bot, an emulated phone, and an actual
phone. Finally, ODIN extensively relies on proxies to pretend the
visits are coming from various, unrelated connections.

3.1 Target Creation and Selection
We generate a new set of target URLs for every run of an experi-
ment. The only exception is the URL shortening dataset, where we
create target URLs once, before starting the experiment.
Typosquatting. The main typosquatting dataset typo-main con-
sists of all possible Damerau-Levenshtein distance one [9] variants
of Alexa’s top 500 domain names. Using the DNS module, we se-
lect only those domain names that responded with valid NS and
A records. We generate the full list of typosquatting domains and
randomly select 2,000 domains for every collection round.
URL shortening services. To create URL shortening targets, we
create URLs pointing to Alexa’s top 20 domain names at 15 URL
shortening services. This selection is a trade off between the limited
number of target URLs that our crawling infrastructure can visit
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Mobile
User Profile User-agent Emulation Referrer Proxy

Vanilla Desktop Windows Chrome No None Yes
Referrer Desktop Windows Chrome No Google Yes
No-Proxy Desktop Windows Chrome No Google No
Google Bot Google Bot No None Yes
Emulated Phone Android Chrome Yes Google Yes
Real Phone Android Chrome – Google Yes

Table 1: Summary of user profiles. All experiments are conducted from
Linux servers, except “Real Phone” for which a Nexus 6P Android was used.

daily and the expectation that our infrastructure can reach more
malicious campaigns. For each experiment, we use all 300 target
URLs in our URL shortening dataset.
Illicit pharmacies. We query the Google Search API with a set
of pharmaceutical-related search terms curated by Leontiadis et al.
shown to produce strong coverage [24, 25]. We freshly generate
and select a maximum of 2,000 URLs for each experiment we run.
Copyright-infringingwebsites.We collect URLs from softonic.
com, a site crowdsourcing answers and rankings of answers to all
sorts of user questions. The site’s statistics claimed that tens of
thousands of users voted on sites in their list of “best free movie
streaming sites.” We compare this site’s crowdsourced solution to
querying Google’s search API with related keywords and movie
titles. We found that Google appears to effectively scrub copyright-
infringing sites from its search results as we only find a fraction of
the sites listed on softonic.com. For each experiment, we harvest
300 URLs from approximately a hundred sites.

3.2 User Emulation
One of our key objectives is to examine how users are differentiated.
To do so, ODIN emulates various types of users. As a side-benefit,
our setup allows us to discover some of the cloaking techniques
miscreants use. More specifically, we scrape each URL target six
times using the six different user profiles, as shown in Table 1. For
all these profiles, we rely on a fully-featured, headless Chrome
browser, governed by Selenium.
Desktop users. The vanilla desktop crawler mimics a desktop
user browsing with Google Chrome using a common Windows
Chrome User-agent. To combat referrer-header-based cloaking as
observed by previous work [24, 25], we also use a modified version
of the vanilla crawler where we set the HTTP referrer header to
https://google.com for our initial query. ODIN visits each tar-
get URL with and without an anonymous (Squid) proxy to better
understand the impact of proxy usage on measurements.
MobilePhoneusers.We emulate a mobile phone browser to study
our hypothesis that TDSs treat phone users differently than how
they treat desktop users. We use Chrome’s mobile emulation op-
tion, and additionally set the correct window size, pixel ratio, and
User-agent to emulate a popular Android phone. To understand
if TDSs detect phone emulation (which has been shown to be triv-
ial [60]), we also use a Nexus 6P phone with a modified version of
Chromium. Faulty testing hardware caused the phone to crash and
shut down during our experiment. As a result, we were only able
to scrape around 50% of target URLs from our phone. Fortunately,
due to ODIN randomizing the target URLs, this error has the same
effect as random sampling.

Google Bot. Certain malicious sites hide their activity or show a
search engine optimization page when visited by Google’s crawler
[24]. To observe how TDSs react when encountering a search en-
gine crawler, we set the User-agent to Google’s crawler.

3.3 Cloaking Detection and Avoidance
A particularly important feature of ODIN is to explicitly consider ad-
versarial behavior from TDSs, and to attempt to detect, and circum-
vent, cloaking. This is partly done through themultiple scrapes from
various user types described above, and complemented through the
following assortment of techniques.
Self rate-limiting. Certain traffic sources, especially typosquat-
ters, cloak their malicious activity after only a few visits from the
same IP address. To combat IP-based cloaking, ODIN’s scheduler
tries to schedule related URLs as far apart in time as possible. Two
URLs coming from the same traffic source are considered related; in
addition, using the DNS module, ODIN determines that two URLs
are related if their domains share identical NS or A DNS records.
ODIN further attempts to mitigate IP-based cloaking by randomly
sampling URLs from the four traffic sources to only visit at most
3,000 URLs every other day.
Anti-browser fingerprinting. Some of the simplest methods to
figure out automation include the detection of User-agents and
the lack of JavaScript execution or handling of cookies. These are
already taken care of by using a full featured browser, as discussed
above. To address some of the slightly more sophisticated browser
fingerprinting approaches we modify properties of our browser by
changing the window size, adding extensions, and adding a default
language. The array of browser fingerprinting techniques that en-
able stateless tracking is vast and therefore our approach may not
be able to cover all possible techniques, e.g. an attacker recognizing
ODIN via canvas fingerprinting [5].
IP rotation.Miramirkhani et al. [34] observed that typosquatters
cloak malicious activity if their pages are visited from a large dat-
acenter’s IP addresses. Thus, ODIN uses university IP addresses
(one per profile) and a /24 subnet from a research-friendly, but less
well-known VPS provider [43]. We do not leverage residential IP ad-
dresses to avoid ethical quandaries [33], and because research [19]
has shown that using university addresses is a good alternative.
Proxy detection avoidance. The simplest way to utilize multiple
IP addresses is to use proxies which can unfortunately be detected.
To avoid proxy detection and since we control the proxy software
deployed on the aforementioned vantage points, we scrub headers
such as the via and the forwarded_for HTTP headers. To study
if there are attackers who leverage more advanced proxy detec-
tion (e.g., WebRTC-based detection), we also collect pages using a
crawler that does not use proxies. Additionally, we emulate mouse
movements to address user behavior-based detection. In the case
of sites streaming pirated movies, we also click on the play button,
as a user would, to trigger stealthy HTML overlay redirections.

3.4 Experiments
In this paper, we use ODIN to collect data through two experiments.
Mainexperiment. In this experiment our goal is to understand the
shared dependencies between the four traffic sources and differenti-
ation of phone and desktop users. For the Main experiment, ODIN

https://google.com
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Label Classes Labels

Error Crawl Error, Error, Blocked
Benign Empty, Parked, Original, Adult, Gambling, Online Pharmacy, Defensive
Illicit Illicit Pharmacy, Keyword Stuffed, Affiliate Abuse, Illicit Adult
Suspicious Survey, Download, Other
Malicious Technical Support Scam, Crypto Scam, Other Scam, Deceptive

Download, Malicious Download, Deceptive Survey, Impersonating,
Phishing, Forced Social, Black hat SEO, Other Malicious

Table 2: Summary of labels and label classes.

collected 490,094 pages during a two-month period. Altogether,
for the Main experiment, we visited every URL six times from six
different IP addresses to address user differentiation and cloaking.
IP-Cloaking experiment. The goal of our secondary experiment
is to quantify and better understand IP-address-based cloaking. In
this experimentwe useODIN to visit pages using two different types
of anonymous proxies. The first proxy uses only one IP address,
while the second proxy rotates through 240 different IP addresses.

This experiment presents a couple of other differences compared
to the aforementioned Main experiment. ODIN uses only four out
of the six available user emulations. We do not visit pages using
a real phone, and we do not use our “No-Proxy” profile explained
in Section 3.2. On the other hand, we use five other datasets sam-
pling 2,000 benign domains from Alexa’s top 1 million list [2], 6,000
typosquatting domains targeting less popular Alexa domains [55],
2,000 domains targeting Alexa popular pharmacy domains, 1,000
domains from PhishTank [40], and 5,000 domains from SurBL [52].

By repeating the IP-Cloaking experiment three times between
June 24, 2019 and August 19, 2019, we collected 441,457 pages find-
ing that whenwe usemultiple IP addresses, we observe significantly
more malicious destination pages.

4 DATA LABELING
To understand potential infrastructural overlap between different
illicit activities as well as user differentiation in TDSs, ODIN alto-
gether visited 78,668 webpages over two months (June 19, 2019–
August 24, 2019). Posing as different “users” (crawlers, desktop, and
mobile users) over different IP addresses, ODIN ended up perform-
ing 874,494 separate URL visits, from which it collected 931,551
pages,1 which produced over 2TB of screenshots, browser events,
and archived HTTP communications.

Unfortunately, we have no externally-provided, reliable labels
telling us which pages are malicious, abusive, or illicit. To address
this problem, we start by semi-automatically labeling 101,926 pages
into fine-grained categories. We then automatically extrapolate the
manual labels to the remaining 829,625 pages. We create specific
classification rules, classifiers, or collect additional information for
certain labels, including illicit pharmacies, malicious downloads
and impersonating pages. As a by-product of this classification,
we conclude this section by discussing the feasibility of predicting
whether a user will be redirected to a malicious landing page solely
based on the redirection chain traversed.

4.1 Labels
Table 2 summarizes the labels we use to classify destination pages
ODIN visits. These labels express the different kinds of abuse ODIN

1Scraping a URL results in multiple pages and screenshots collected, if newwindows
are opened in the browser automatically.

encountered, and can be grouped into five classes: error, benign,
illicit, suspicious, and malicious.

Error labels.We label errors caused by our infrastructure as “crawl
error,” most frequently due to one of our proxies not working.When
we are explicitly blocked, then we tag the page as “blocked.” All
other errors are labeled as “error.”

Benign labels.We label pages as “empty” when we find little or no
content. For simplicity the “parked” label aggregates together pages
consisting of ads, trying to sell domain names, under construction,
under-developed or serving an HTTP server default page. The
“adult” and “gambling” labels include any related content, for exam-
ple including adult games, dating sites, and lotteries. Pharmacies
that do not leverage compromised sites are labeled as “pharmacy.”
All benign pages with substantial content that do not fit any of the
other benign categories are labeled as “original content.” We label
defensive registrations where brand owners proactively register
the typosquatting variants of their domain name as “defensive.”

Illicit labels. We label all online pharmacies leveraging compro-
mised sites for black-hat search engine optimization [24] and store-
front hosting as “illicit pharmacy.” When we visit these same pages
posing as a Googlebot, they often present pages full of keywords, in
an effort to game search-engine rankins and attract more visitors.
We label these pages as “keyword stuffed.” Sites abusing affiliate pro-
grams by automatically redirecting users to advertisers are labeled
as “affiliate abuse.” In a couple of cases, ODINwas redirected to adult
pages of dubious legality. We discard these screenshots, only keep-
ing their hashes, and label the corresponding pages as “illicit adult.”

Suspicious labels.When ODIN is redirected to suspicious pages
offering a download or a survey, but there is no deception involved,
then we label them as “download” or “survey” respectively. When a
page is engaging in suspicious activities (for example an otherwise
empty page is asking us to enable notifications) we then tag the
page as “other” as we are not sure about the intent.

Malicious labels.When deception is involved, we label download
and survey pages as “deceptive download” or “deceptive survey.”
Deceptive download pages try to scare users into downloading files
telling them, for example, that their flash player is outdated or warn-
ing them that they might have vulnerabilities or even viruses. When
a downloaded file is malicious, we then label the page as a “mali-
cious download” if the page does not have another malicious label.

We label pages informing us that we have been selected to re-
ceive free products or money as “deceptive survey” or “other scam”
depending on whether filling out a survey is required. Often these
pages ask users to perform several tasks such as filling out surveys,
asking for personal information, and downloading applications. We
also label pages offering high-yield investments or high-paying
jobs not requiring any specific skills as “other scam.” We label pages
offering free crypto currency mining or large amounts of crypto
rewards as “crypto scam.” We label pages that are clearly set up
to steal a user’s personal data as “phishing.” We distinguish pages
impersonating online services to trick users into sharing their cre-
dentials as “impersonating.” We label pages as “tech scam” if they
try to scare users into believing that their machine is infected and
that paying for technical support offered on the page is necessary
to clean their computer.
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Certain pages craft HTTP redirects to try to automatically ini-
tiate some user action. In particular, we label pages that attempt to
force users into engagement on a social network, like tweeting or
sharing, as “forced social.” Other pages redirect users to a Google
search to manipulate their brands’ or sites’ search ranking: we label
these as “black hat SEO.” Finally, we label pages as “other mali-
cious” when users are presented with deceptive warnings or error
messages, but where the malicious use case is not immediately clear.

Multiple tag label. URL shortening services might present users
multiple different types of content. We label them as “multi tag,”
to avoid combinatorial explosion in the number of categories our
classifiers will have to predict.

4.2 Clustering and Data Labeling
Using the labels described, we cluster and semi-automatically label
101,926 pages collected between June 19 and July 4 in 2019. These la-
bels form the bedrock of our subsequent (automated) classification.

We start by leveraging several approaches to cluster pages. These
methods include grouping pages by matching text or perceptual
hash [14], and clustering using the 𝑘-nearest neighbor algorithm
(KNN). The KNN clustering uses the last layer of DenseNet 201
model trained on the ImageNet dataset from the Keras library [7]
as features. Additionally, we use regular expressions based on pre-
vious work [55] to classify parked pages, and simple heuristic rules
based on the HTTP error code received and the text shown to users
to find error pages. These enable us to label 65,276 pages.

The remaining 36,650 pages feature 14,746 unique perceptual
hashes. We randomly selected a page for each different hash, and
then had it manually labeled by at least two researchers. Inter-coder
agreement was high, with a Cohen’s kappa score of 0.81. When
manual labels did not match, a third researcher broke the tie, or the
label was further discussed as a group when deemed necessary. We
then labeled the remaining 21,904 pages by propagating identical
labels to all pages sharing the same perceptual hashes.

As a final validation check, we randomly selected amaximum of a
hundred screenshots for each label, adding up to 1,607 labels, which
we verified again. Only 43 screenshots (2.67%) had the wrong label.
We find that 42 of these mislabeled pages consisted of error, blocked,
parked or empty labels. Such pages often have little content, which
causes perceptual hashing to be too coarse. However, we find this in-
accuracy acceptable for our purposes, as we do not necessarily need
to distinguish between error pages and under-developed pages.

4.3 Tag Extrapolation
After our manual labeling, 388,168 pages in the Main experiment
and 441,457 pages in the IP-Cloaking experiment remain unlabeled.
To label these pages we train a RF (Random Forest) classifier. We
compile a list of features both from related work [61] and from our
domain experience. The features include content and DOM-related
features such as the page size, number of frames, number of unique
HTML tags, number/ratio of internal/external links, text size, link
to text ratio, ordinal encoded perceptual hashes of the screenshots,
number of total/unique/ratio of pharmacy-related words and the
number of unique words. We find the Random Forest classifier per-
forms best with n_estimators=32 and min_samples_split=2.

Label Precision Recall Label Precision Recall

Error 0.87 0.89 Phishing 1.00 1.00
Blocked 0.99 0.98 Deceptive Survey 0.81 0.97
Crawl Error 0.97 0.94 Deceptive Download 0.94 1.00
Empty 0.99 0.91 Tech Scam 0.96 0.98
Parked 0.94 0.84 Crypto Scam 1.00 1.00
Original Content 0.86 0.59 Other Scam 0.90 0.99
Gambling 0.90 0.98 Other Malicious 0.94 1.00
Pharma Store 1.00 0.96 Download 0.95 0.93
Adult Content 0.96 0.96 Survey 0.99 1.00
Keyword Stuffed 0.90 1.00 Other 1.00 1.00
Illicit Adult 1.00 1.00 Multi Tag 1.00 1.00

Table 3: Per-class precision of our multi-class RF classifier. As our
goal was to evaluate precision, we selected a hundred samples per
class, which results in the recall for classes with many elements to be
biased negatively. Recall appears lower for these classes as the number
of positive examples is disproportionately underrepresented.

Our classifiers have a 97.7% accuracy and 97.0% average precision
over our classes evaluated on a 10% validation set. After predicting
labels in our unlabeled datasets, we evaluate the classifier on a max-
imum of 100 random samples for each label from the previously
unlabeled dataset. The average precision drops to an acceptable
94.9%. Table 3 lists the per class precision of the RF model. For the
rest of the paper we use the combination of our manual labels and
results from the RF model’s predictions.

5 AUTOMATIC LABELINGMETHODOLOGY
In this section, we describe additional specialized classifiers and
heuristic rules we use to label pages.

We train a Random Forest classifier building on the observation
by previous work [24] that illicit pharmacies will respond with dif-
ferent web content to HTTP queries from our different user profiles.
The model relies on features calculated for all scrapes of a page,
including number/ratio of external links/sources, link to text ratio,
number/unique/ratio of pharmacy-related words, length of domain
redirection chain, landing error code, number of external source
domains. On a test set of 200 sample pages our classifier’s precision
is 97% and the recall is 93.1%.

A typosquatting page is labeled “defensive” if it is owned by
a known brand protection company or directly redirects to the
brand owner’s original domain. Leveraging the methodology of
Szurdi et al. [55], if a typosquatting domain name redirects to a
non-malicious content through one or more different intermediate
traffic broker domain names, then we label it as “affiliate abuse.”

We label a page as “malicious download” if we downloaded a
file from the page, the file was tagged malicious by at least one
VirusTotal vendor, and the page was not previously assigned a dif-
ferent malicious label. We determine which URLs lead to “forced
social” media actions by searching through the developer APIs of
Facebook, Twitter, and LinkedIn and recording which endpoints
correspond to each action. We find that TDSs discretely redirect
users to search engines (e.g., Google) with specific search queries,
presumably for black hat SEO. We only label a page “black hat SEO,”
if the search terms contains a domain name or a brand name.

Manually investigating HTTP archive files, we verified if any
of the 1,339 pages labeled earlier based on the visual appearance
as “potentially impersonating” are truly impersonating. This leaves
us with 132 manually-tagged “impersonating” pages, which we
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Features Comment

Redir chain features
Length of redirection chain [4, 21, 27, 55, 57]
Length of registered domain redirection chain [31, 55]
IP instead of domain at current hop in chain [23, 27, 64]
Top Level Domains seen in redrection chain [27]
Type of redirections (e.g., JavaScript, meta, HTTP) [57, 61]
Number of IP addresses seen in redirection chain

Domain features
Cur/Sum/Avg/Max domain length [23, 31, 55, 57, 64]
Cur/Sum/Avg/Max number of hyphens [23]
Cur/Sum/Avg/Max number of dots [23, 31, 57, 64]

URL features
Cur/Sum/Avg/Max URL length [21, 23, 31, 57, 61]
Cur/Sum/Avg/Max number of URL paramteres [23, 27]
Cur/Sum/Avg/Max length of URL parameters [23]
Cur/Sum/Avg/Max length of URL path [23, 57]
Cur/Sum/Avg/Max number of URL path sub directories [23]
Cur/Sum/Avg/Max length of URL filename [23]
Cur/Sum/Avg/Max content size (except last hop) [4, 27, 55]

Table 4: Features used for predictingmalicious redirections described
in Section 5.1. Cur means the value at a given redirection hop. In the
comment column, we list references to papers that have used similar
features often for different purposes.

then extrapolate to 1,556 pages by matching each landing URL’s
perceptual hash and domain.

5.1 Proactive Classification ofMalicious Pages
We piggyback on the labeling effort described above to develop a
prototype classifier that can identify whether a user is going to land
on amalicious page.We use features purely based on the redirection
chain and the URLs visited before loading the final destination page.

While researchers experimented with some variant of the fea-
tures we use [4, 21, 23, 27, 28, 31, 55, 57, 61, 64], they either used
features heavily relying on the page loaded or chose a graph-based
approach building on the entire redirection chain graph to calculate
their features. Our approach is different, as we only rely on the sin-
gle redirection chain being traversed to predict if a user will land on
a malicious page, and do not use a pre-computed malicious graph
topology (which might change over time). Furthermore, previous
work usually concentrated on one type of malice (e.g., phishing,
drive-by-download), while our approach is independent of the kind
of malice perpetrated.

Features. Our features include the number of URLs, IPs, and do-
mains visited during redirections and the method of redirection
(e.g., JavaScript, meta headers, and HTTP redirection codes). Our
domain name features include the length of the domain name, the
number of subdomains and the number of hyphens used in the
domain name. URL-based features include the length of the URL,
the number of URL parameters, the length of the parameters, the
length of the directories, the number of sub-directories, the length
of the filename, and the amount of content downloaded from the
URL. We compute the previously described features for the last four
hops of the redirection chain. We also derive the sum, mean, and
maximum of these features across the entire relevant redirection
chain. We detail the full list of 181 features used in Table 4.

Training a random forest classifier. Using these features, we
train a random forest classifier.We train the classifier on our 101,926
semi-manually labeled pages. We used the random forest classifier

Copyright Pharmacy Typosquatting URL Shortening All

Error 6,817 (7.51%) 8,057 (10.1%) 41,734 (15.5%) 9,773 (18.2%) 66,381 (13.5%)
Benign 50,594 (55.7%) 45,003 (56.6%) 182,319 (68.0%) 31,223 (58.3%) 309,139 (62.8%)
Illicit 22,928 (25.2%) 25,595 (32.2%) 35,975 (13.4%) 5 (0.01%) 84,503 (17.1%)
Suspicious 8,089 (8.91%) 50 (0.06%) 3,668 (1.37%) 5,278 (9.86%) 17,085 (3.47%)
Malicious 2,334 (2.57%) 737 (0.93%) 4,345 (1.62%) 3,616 (6.76%) 11,032 (2.24%)
Multiple Tags 0 (0.0%) 0 (0.0%) 0 (0.0%) 3,612 (6.75%) 3,612 (0.73%)

All 90,762 79,442 268,041 53,507 491,752

Table 5: Label categories per traffic source.

Android Desktop Google Bot No Proxy Real Phone Referrer

Error 10,580 (11.5%) 10,750 (11.3%) 17,690 (19.8%) 7,579 (8.01%) 6,468 (22.1%) 13,314 (14.3%)
Benign 56,153 (61.2%) 61,033 (64.4%) 60,236 (67.6%) 60,290 (63.7%) 16,517 (56.4%) 54,910 (59.3%)
Illicit 17,566 (19.1%) 15,859 (16.7%) 9,752 (10.9%) 19,249 (20.3%) 4,679 (15.9%) 17,398 (18.8%)
Suspicious 3,610 (3.94%) 3,970 (4.19%) 741 (0.83%) 4,098 (4.33%) 941 (3.22%) 3,725 (4.03%)
Malicious 3,216 (3.51%) 2,152 (2.27%) 372 (0.42%) 2,497 (2.64%) 525 (1.79%) 2,270 (2.45%)
Multiple Tags 529 (0.58%) 930 (0.98%) 215 (0.24%) 940 (0.99%) 124 (0.42%) 874 (0.94%)

All 91,654 94,694 89,006 94,653 29,254 92,491

Table 6: Label categories per crawl profile.

of the Scikit-learn Python library [10] with a maximum depth of
32, maximum features of 40, minimum sample split of eight and
300 estimators.

6 RESULTS
We next use our labels to describe the kinds of pages ODIN finds.
Then, we discuss TDS overlap based on the redirection chains we ob-
serve. We also elaborate on abuse in these TDSs, and how blacklists
perform. Finally, we evaluate our proactive classifier’s performance.

6.1 Label Analysis
We start our analysis by discussing the types of content users are
exposed to in the studied TDSs based on the labels described in
Section 4. Tables 5 and 6 summarize the number of pages found per
label class. After removing errors, we find that 26.5% of all collected
pages are malicious (2.6%), suspicious (4.0%) or illicit (20.0%).
Phone versus desktop users. Figures 2a and 2b present the page
count, and the associated Normalized Relative Descriptive (NRD)
score for each destination page label, when sliced by traffic sources,
and by crawl profile. We calculate the NRD score by first normal-
izing the number of occurrences for each slice separately, and then
normalizing again for each label separately.

Figure 2b shows that phone users are, compared to desktop
users, more often targeted by survey campaigns (e.g., promising
prizes in exchange for filling out multiple questionnaires and down-
loading an app), by forced social media actions and impersonating
pages, and, by illicit adult sites. Conversely, certain kinds of mali-
cious contents, such as technical support scam pages and deceptive
download pages, are more often shown to desktop users. One pos-
sible explanation for the absence of technical-support scams for
phone users is that increasingly US adults no longer have landlines
and solely rely on mobile phones for communication [46]. Making
their smartphone unusable (via a barrage of pop-ups and alerts)
would therefore prevent these users from being able to call the
scammers and request their assistance. Because the mobile and
desktop experiments were conducted at the same time and with
the same infrastructure, this is the first time – to the best of our
knowledge – that a study can conclusively state that mobile users
are targeted by different malicious ads, compared to desktop users.
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Figure 2: Label counts and NRD score heatmap. The NRD score shows which labels aremost characteristic of traffic sources (a) or crawl profiles (b).

Common malicious destination pages across traffic sources.
Typosquatters appear to expose users to the same malicious con-
tent as illicit movie streaming sites and ad-based URL shortening
services. Half of our malicious labels are present in all three of these
datasets. We often observe the same technical support scams, decep-
tive survey and deceptive download pages. In Section 6.2, we dig
deeper in whether these similar malicious landing pages are part of
the same campaigns. Contrastingly, the pharmaceutical ecosystem
appears to be largely non-overlapping with these other activities.

Maliceinourdatasets. Figure 2a shows that pharmaceutical queries
present substantially different behavior compared to the other three
traffic sources. We rarely observe malicious landing pages in this
dataset and, as expected, we find mostly illicit pharmacies and
keyword stuffed pages. Surprisingly, ODIN downloads a large num-
ber of malicious files while visiting pharmaceutical-related URLs,
which has not been reported by previous research. Figure 2b shows
clear differences depending on the type of user connecting: phone
users (real or emulated) show different patterns than desktop (with
or without proxy) users, while crawlers (GoogleBot) land on com-
pletely different pages.

Next, Table 5 shows (ad-based) URL shorteners present the high-
est rate of malicious URLs. These services frequently advertise adult
content, crypto scams and file downloads. Among these destination
pages, crypto scam advertisements were mostly unique to URL
shortening pages. We found that 72% of all unique downloaded files
are malicious, according to Virus Total. This number is 97.5% in the
case of files downloaded from URL shortening services.

Confirming previous findings [1, 55], typosquatting domains
lead us most of the time to parked pages. However, typosquat-
ters also often engage in affiliate abuse, and in a wide variety of
malicious activity. Most commonmalicious or suspicious content in-
cludes download pages, deceptive surveys, forced Google searches,

impersonating pages, technical support scams and other scams.
Certain malicious pages are specific to typosquatting pages, includ-
ing forced Google searches, surveys (not deceptive), and financial
phishing pages. We discovered 11 typosquatting domains hosting
phishing content targeting customers of several large financial insti-
tutions. Additionally, we found one curious case of a forced Google
search as part of a campaign launched by somebody attempting to
disparage a corporation’s public image with keywords such as “rip
off,” “stock,” and “report.”

Copyright infringing sites most commonly attempt to monetize
user visits by deceiving users into downloading unwanted files.
Moreover, movie streaming sites automatically force users to post
on social media sites to promote their illicit activities.

Cloaking and bot detection.When ODIN poses as a Googlebot,
it observes only few instances of malicious, suspicious or illicit
content. This provides us with a baseline of how TDSs behave
when visited by an automated crawler. We observe that automated
crawlers are explicitly blocked 5% more often than other users and
covertly blocked (by sending users to parked or other error pages)
at least 8% more frequently.

We find no evidence of proxy detection based cloaking. While
not using proxies resulted in a lower error rate, this is due to errors
caused by the proxies. Similarly, it appears that cybercriminals do
not attempt to detect phone emulation. The only difference between
our emulated and real phone experiment is due to a measurement
quirk: the phone infrastructure was not working on the dates when
the crypto scam and the impersonation campaigns took place.

We confirm results by previous work [24, 25], that illicit phar-
macies use the HTTP referrer header to cloak their illicit activity.
Conversely, setting the referrer header seems to have the opposite
effect in other TDSs, in that it slightly decreasing the number of
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Label Multi IP Single IP

Error 56,794 62,947
Benign 148,428 144,756
Illicit 10,835 9,937
Suspicious 1,672 1,373
Malicious 2,690 1,287
Multiple Tags 411 429

Table7:Comparing label categoriesofusingmultipleversusoneproxy.

malicious pages discovered. The only exception is black-hat SEO
activity, which almost always requires a referrer header field.

IP-Cloaking experiment. In Table 7, we present the results of the
IP-Cloaking experiment, where we compare the difference between
using 240 IP address versus only one IP address while running the
same measurements.Wefind that usingmultiple IP addresses
leads us tofindmore than twice asmanymalicious pages.We
also experience fewer errors, and find more illicit and suspicious
pages with multiple IP addresses. When miscreants show us a be-
nign or error page instead of a malicious one, we face cloaking 86%
of the time and are explicitly blocked only 14% of the time.

We also find that typosquatting domains are more likely to block
our crawler if we use only one IP address, compared to URLs in the
copyright, pharmaceutical, and URL shortening datasets. Moreover,
if a malicious actor does not bother to conceal their activity from
crawlers, they also do not bother performing IP-based blocking.
Last, our phone crawler was proportionally less frequently blocked
than the desktop crawlers.

6.2 TDS Redirection Analysis
We next discuss how the different traffic sources we selected share
traffic brokers, subsequently sending users to similar malicious
destinations. To that effect, we analyze TDS redirection chains.

User differentiation. Figure 3 compares how phone and desktop
users might traverse entirely different parts of the TDS ecosystems.
Nodes are domain names; edges signify a redirection between two
domains. Blue domains were visited by our Android crawler, red
domains were visited by our desktop (no-proxy) crawler; purple
domains were visited by both crawlers. Red and blue clusters repre-
sent neighborhoods in the TDS ecosystem visited only by desktop
users, or by phone users respectively. The zoomed example in the
top left corner illustrate edges pointing to red (technical support
scam) and blue (deceptive survey) domain clusters: these clusters
denote landing pages. Purple clusters are source domains with only
outward edges. Figure 3 shows the importance of studying user dif-
ferentiation, as users visiting the same URLs about half of the
time end up on very different pages depending on whether
they use a phone or a desktop for browsing.

Ecosystem infrastructure overlap. Through our previous obser-
vations, we can conclude that different TDSs frequently serve the
samemalicious content to users. Next, we analyze whether these are
the same entities that serve content to the different traffic sources.

In Figure 4a we present the number of unique malicious, suspi-
cious or illicit unique traffic broker registered domains overlapping
between different TDSs. Even though the illicit pharmacies over-
lap with other traffic sources, it is only a few domain names. We

Figure 3: Malicious TDS redirection chain graph.

conclude that often the same entities are redirecting users to mali-
cious landing pages as we observe 19.2% to 44.1% traffic broker
domains overlap between non-pharmacy TDSs.

In Figure 4b we look at the overlap of unique landing registered
domains across TDSs. We find that while the illicit pharmacy TDS
overlaps only 3.7% to 4.1% of the time with the other datasets. Dif-
ferently, typosquatting, copyright infringing and URL shortening
TDSs overlap with each other 16.9% to 32.2% of the time.These traf-
fic sources overlap four to eight times more with each other
than they do with illicit pharmacies.
Redirection chain lengths. Like Li et al. [28], we observe that
on average users landing on amalicious, suspicious, or illicit
page, are redirected through 71% to 122% longer chains com-
pared to when landing on a benign page.

Figure 5 illustrates the average redirection chain length for differ-
ent crawl profiles and traffic sources. The pharmacy dataset shows
a much shorter average redirection chain length compared to the
other traffic sources, as usually they redirect users directly to the
store from a compromised webpage. The Googlebot crawler experi-
ences significantly fewer redirections than other agents. Conversely,
phone crawlers are redirected more than the desktop crawlers.
Domain lifetime. As we sample a new set of URLs for every run
of our experiments, we cannot directly compare the lifetime of the
source domains. For the landing and intermediate domains, we can
look at the number of days we see these domains as a rough proxy of
relative usage lifetime in TDSs. Similar to related work [25, 27], we
observe that intermediate domains (traffic brokers) are longer-lived
than landing domains. Using a Mann-Whitney U-test, the differ-
ence is statistically significant for benign pages (5.62 days vs. 3.32
days, 𝑝 <0.01, effect size2 0.61), error pages (3.52 days vs. 2.84 days,
𝑝 ≤0.01, effect size 0.53), and, most interestingly, malicious pages
(5.06 vs. 2.46 days, 𝑝 < 0.01, effect size 0.70), where intermedi-
ate domains are activemore than twice as long as landing do-
mains. The difference is not statistically significant (𝑝 >0.1) for the
illicit (5.09 vs. 4.54 days) and suspicious (6.50 vs. 5.49 days) sources.
Top malicious domains. We list in Table 8 the top five traffic
broker domains that redirect to the most malicious, suspicious
or illicit landing pages. These five domains are responsible for
morethanhalfofall themaliciousredirectionsweencounter.
While these domains also redirect us to benign landing pages, this
is generally not their primary business (only odysseus-nua.com
could plausibly claim a majority of its traffic isn’t malicious). They

2Effect size is calculated using the Common Language Effect size [37].
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Figure 4: Overlap of uniquemalicious, suspicious or illicit traffic broker and landing registered domain names between different traffic sources.
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Figure 5: Average domain redirection chain length.

Domains Out edges In edges Mal. out rate Mal. in rate #days

forwrdnow.com 2,595 2,595 0.6019 0.6019 9
7lyonline.com 1,811 1,811 0.6919 0.6919 6
136.243.255.89 2,015 2,015 0.5727 0.5727 35
odysseus-nua.com 4,612 4,621 0.2446 0.2441 35
gonextlinkch.com 912 913 0.9912 0.9901 3

Table 8: Topmalicious traffic broker domains.

tend to be long lived: odysseus-nua.com and 136.243.255.89 are
used undisturbed for more than two months, our full study period.

Domains Out edges In edges Mal. out rate Mal. in rate #days

eleseems-insector.com 572 572 0.9930 0.9930 32
turtlehillvillas.com 596 596 0.9916 0.9916 35
gonextlinkch.com 912 913 0.9912 0.9901 3
7lyonline.com 1,811 1,811 0.6919 0.6919 6
addthis.com 659 794 0.7436 0.6171 34

Table 9: Most malicious traffic broker domain names

High malicious rate domains. Some traffic broker and landing
domains seem to entirely serve malicious redirections as shown in
Table 9. Even though they are an integral part of malicious ecosys-
tems, it seems that many of them continue operating undisturbed.
All the domains appearing for a few days only in our dataset are
redirecting users to deceptive downloads. Certain domains, such as

eleseems-insector.com, redirect users to technical support scam
pages in the vast majority of the time; 7lyonline.com, redirects
users to forced social media actions such as forced tweets. While ad-
dthis.com is a popular service, we observe that it is often used in redi-
rection chains that automatically force social media interactions.
TLD usage in redirection chains. Analyzing how domains are
utilized for redirections, we found that, on average, 2.7 times more
unique domains and 2.5 more unique TLDs are leveraged for in-
termediate nodes in a malicious chain compared to a benign one.
Additionally, it is 2.3 times likely for a malicious redirection chain
to lead users to a destination page that uses a new gTLD domain3.

6.3 Google Safe Browsing analysis
We next look into whether Google Safe Browsing (GSB) can help ac-
curately label TDS destination pages as malicious. To do so, we com-
pare GSB labels to ourmanually analyzedmalicious label dataset col-
lected between June 19, 2019 through July 4, 2019. We use the GSB
Update API [12, 13] to determine if a domain or URL is deemed mali-
cious by GSB. In a redirection chain, if any domain or URL is present
in GSB on a given day, we label the page as malicious on that day.
Lack of coverage for malicious pages targeting phone users.
While we find that mobile users are more frequently redirected
to malicious landing pages than desktop users, it seems that GSB
does not include malicious landing pages shown to mobile
users 76% of the time. We conclude that not only are miscreants
selectively catering malicious content towards mobile users but
also that GSB currently suffers from poor coverage trying to protect
mobile users when it comes to these malicious URLs.
Lack of coverage and delay in blacklisting. We find that GSB
only labels 92 out of the 3,746 malicious pages on the same day we
detect them. Even after 60 days, GSB finds 32% less malicious pages
than we do. Additionally, a significant fraction of the GSB labels are
false positives4 due to the dynamic nature of TDSs, which redirect
users to different destination pages at each visit, and the destination
pages themselves changing over time. Finally, we confirm findings
about the delay of blacklisting observed in other contexts [47], find-
ing an average of seven-day delay for GSB to detect malicious pages.

3We consider a gTLD to be new if it was introduced after 2011.
4GSB false positives fall into the error, original content, parked and gambling labels,
with a secondary manual analysis confirming these results.
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6.4 Classifier Performance
In light of the poor blacklist coverage we observed, we evaluate our
classifier predicting whether a redirection chain will lead to a mali-
cious page holds promise. We find our classifier achieves an average
99.0% accuracy and 92.7% 𝐹1 score (evaluated using 10-fold cross-
validation) in labeling redirection chains as malicious or benign.
Our classifier has a large area (0.95) under the precision-recall curve,
with a particularly good trade-off at (0.89: recall, 0.9: precision).

Thus, our random forest classifier is able to identify the majority
of malicious redirection chains with a decent precision before users
would land on them. If a high precision is required (to accommodate
base-rate issues and minimize false alarms), the classifier can still
identify more than one third of the malicious pages proactively, as
shown by the (0.42: recall, 0.99: precision) point.

Adversarial considerations.While the classifier performance ap-
pears satisfactory, we have to assume an adversary would spare no
effort in trying to evade classification. Fortunately, features based
on the redirection chain (e.g., chain length) could be economically
costly for an adversary to evade. First, evading many of these fea-
tures would restrict usage of TDSs, and thus, wouldmake user traffic
acquisition more costly. Second, without complex redirections, it
becomes easier to automatically blacklist miscreants’ domains. Sim-
ilarly, our features related to the TLDs used would be a burden for
an adversary to evade as these miscreants usually select TLDs, for
at least some of the redirection hops, where registering domain
names is cheap and convenient to decrease the cost of blacklisting.

URL and domain name-related features are moderately hard to
evade as some of the URL features are inherent to the redirection
hops the adversary does not necessarily control. For example, a
traffic redirection service that is not particularly malicious, but that
does not care about the safety of the users, might not change how
it functions to aid its malicious customers. Some domain-related
features might not be trivial for an adversary to evade as short do-
mains are scarce and random domains are easier to detect. Miscreant
would have to continuously generate longer but plausible sounding
domain names. In short, our proposed classifier achieves reasonably
good performance and should be reasonably robust to evasion.

7 DISCUSSION

Protecting users. Our machine learning model could be used, for
example, as a browser extension to warn or block users before
they are exposed to malice. Unlike previous work that relies on
precalculated malicious graph topology [16, 27, 28, 51], our clas-
sifier only uses features observed at redirection time, making our
model generalizable to any malicious activity that redirects users
in a similar fashion as the TDSs we study. Such a mechanism would
be a plausible complement to blacklisting, especially considering
the inadequate coverage of existing blacklists.

Infrastructure take-down. Given the sharing of TDS infrastruc-
ture among different types of abusive content, our results suggest
that correct prioritization of TDS take-downs by law enforcement
has the potential to curb multiple kinds of abuse simultaneously.

Future of online crime research.Whether we consider academic
research, security industry or law enforcement, going forward,
when security practitioners attempt to discover malicious content

online, they must deploy their crawlers from multiple vantage
points, mitigate a variety of cloaking techniques and emulate differ-
ent form factors (i.e., desktop and mobile). To inspire more research
in this area, we open-sourced ODIN [18] and make the data col-
lected available to researchers upon request.

8 CONCLUSION
This paper introduced ODIN, a measurement infrastructure to study
for two months user differentiation, cloaking, and business integra-
tion in four different traffic sources that use TDSs. We found that
these traffic sources often integrate their business model and send
users to the same TDSs and malicious destination pages. Our analy-
sis clearly demonstrates that phone and desktop users are redirected
to different malicious landing pages. We also observed a significant
amount of user-agent, referrer header field, and IP address-based
cloaking. Altogether, when visiting URLs posing as six different
types of crawlers, ODIN was able to unearth 81% more malicious
landing pages compared to using only the most efficient crawler
by itself. We also discovered that popular blacklists, including GSB,
present limited coverage of malicious pages especially those target-
ing mobile users. Overall, our findings show that future studies mea-
suring online crime must deploy their crawlers from multiple van-
tage points, address cloaking and emulate different types of users.
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