
When AppMon met Stager
Nikos Nikiforakis, Demetres Antoniades, Evangelos P. Markatos, Sotiris Ioannidis

Institute of Computer Science
Foundation for Research & Technology – Hellas

{nikifor,danton,markatos,sotiris}@ics.forth.gr

Arne Oslebo
UNINETT, Trondheim, Norway
arne.oslebo@uninett.no

Abstract—Monitoring applications provide an important ser-
vice in network related activities, such as network monitoring,
network management and network software engineering. They
facilitate the need of understanding exactly what occurs inside
our networks and how each network interacts with the rest of
the Internet. From private and local networks, to large-scale
corporate networks and intranets, there is an ever-growing need
to characterize and analyze network traffic. Unfortunately, net-
work monitoring applications have the side effect of generating
huge amounts of real-time data, that need to be processed, stored
and presented, in an effective fashion. If this is done correctly
and efficiently, network administrators, researchers, as well as
users, can extract useful information from them, such as, traffic
patterns, newly deployed network protocols,etc.

In this paper we present our experiences on the combination
of two tools, AppMon and Stager, and the study of the resulting
system.AppMon is a network monitoring toolkit which performs
per-application traffic classification. Stager is a tool which stores,
aggregates and presents long-term network statistics, coming
from multiple monitoring sides. We modified, combined, and ex-
tended these tools so that real-time data produced byAppMonare
transferred, converted and stored throughStager. The resulting
system gives access tovaluable aggregated long-termnetwork data
which were not available through existing tools and methods.

I. I NTRODUCTION

Computer networks have gotten so fast and so complex over
the years, that we now face a daunting task whenever network
administrators and researchers try to analyze and understand
network traffic.

In the past it was easy to categorize network traffic, since
all network-centric applications used static, well-knownports,
such as port 80 for HTTP and port 21 for FTP (port 20
for FTP-data transfers). These static ports are still used,but
the new generation of network applications such as peer-to-
peer (P2P) programs and voice-over-IP (VOIP), no longer
use static and predefined network ports [1], [2]. All the file
sharing and Internet telephony programs (as well as worms
and trojans) dynamically allocate ports every time they are
installed and/or executed. This dynamic allocation of ports has
stalled nearly all network monitoring applications, sincethe
majority of them, use a list of ports and protocols to associate
traffic with a specific application. To address this limitation,
new monitoring applications use more sophisticated methods
of traffic categorization, such as deep packet inspection and
packet flow states. These tools have proven themselves very
useful and have greatly assisted both researchers and network

administrators in better understanding the traffic“produced”
and “consumed” by their networks.

The usefulness of these kind of network monitoring ap-
plications is twofold. Their ability to present the real-time
traffic distribution of a network, assists in identificationand
response on network problems and unusual events. Also, the
data produced by these applications can be stored and used
in presenting long-term statistics of the network usage. This
paper’s focus is on this second aspect. Our work aims at the
collection, storage and presentation of the results produced
by a traffic classification application, where unfortunately a
new problem emerged. Due to the tremendous speed increase
in computer networks, as well as increase in network users,
we are faced today with huge amounts of network monitoring
data to process. Capturing, storing, and analyzing, such large
amounts of data in order to extract useful information is
proving to be quite a challenging task. This paper presents
our approach of capturing, storing, handling and presenting
network data. Capturing is performed byAppMon, a novel net-
work monitoring toolkit we have been developing at FORTH
over the last couple of years. A more detailed description
will be presented in Section III-A. Storing and handling, are
performed by a tool developed at Uninett, calledStager(see
Section III-B for more details). We developed a new system
that combines and extendsAppMonandStager, and allows for
a plethora of information extraction from both real-time and
post mortem network data traffic.

Network administrators and researchers now have the
unique ability of“traveling back in time”and examining exact
screenshots of their network traffic at any date and time they
may choose.

II. RELATED WORK

On the front of network traffic classification, several meth-
ods have been proposed over the years. The oldest and proba-
bly most outdated method is the classification by port number,
which AppMon only uses as a backup identification method
– when everything else fails – for standard web services
and for well-known services were the payload is encrypted.
Karagianniset al., presented a new way of characterizing
traffic using statistics and graphlets called Blinc [3]. They
stipulate that each class of network traffic (web, P2P,etc.)
has different identifiable characteristics which can be used to



classify it.AppMonis different from Blinc, since it uses deep
packet inspection (in a manner similar to [2], [4]) instead,and
flow-state analysis, in order to classify the captured network
traffic.

On the part of monitoring data representation, we found out
that most tools for presenting network data were application-
specific. That is, they were created with a very specific data-
set in mind,e.g. NetFlow [5]. Stager is different due to its
“modular” nature.Stagerconsists of a core that handles all the
computations, web-frontend and database communication. The
application-specific work is done through a set of modules. By
using different modules, data visualization of different traffic-
capturing tools, can be done through the same application.
The code bridge that we constructed for our system, is in
essence the development of theAppMon-specific module for
Stageralong with the architecture and methods of connecting
multiple-remoteAppMonnetwork sensors to a centralStager
server.

III. AppMonAND StagerOVERVIEW

Before we go into the details of our new integrated system,
we will give a brief overview of theAppMon toolkit and the
Stagertool, and how they operate.

A. AppMon Description

The AppMon toolkit [6] passively monitors traffic passing
through a monitored link and analyzes active network flows.
Flows are identified by a 5-tuple: source and destination IP
addresses, source and destination port numbers, and transport
layer protocol. Once identified they are categorized according
to the application that generated them.

Traffic categorization is performed using information from
both the packet header and the payload.AppMonuses different
classification methods for different application protocols such
as deep packet inspection for P2P networks and control-port
monitoring for well known protocols.

AppMonstores the data mined from the previous steps in
a round-robin database which is updated every 10 seconds
(configurable parameter) with new data. To present the traffic
classificationAppMon, uses a web interface (see Figure 1).

Fig. 1. AppMonWeb Interface. Traffic classification of the entire network is
visualized in the left pane of the interface, while the rightpane displays the
“heaviest,” in terms of network use, IP-application pairs.

On the left pane of the Web interface, a graph visualizes
both incoming and outgoing traffic distribution of the mon-
itored network. The time period presented on the graph is
user selectable. The right pane of the Web interfaceAppMon
displays information about the hosts that produce and consume
the traffic during the selected time period. Specifically, the top
10 IP addresses and protocol combinations that are responsible
for the incoming and outgoing traffic.

B. Stager Description

Stager [7] is a system for aggregating and presenting
network statistics. It is a generic tool that can be customized
to present and process any kind of network statistics. It
consists of two basic parts:(i) The back-end that collects
data from different monitoring applications, formats themand
stores them as reports in a database. It automatically handles
the aggregation of hourly statistics into days, weeks, and
months.(ii) The front-end that connects to the database and
handles the presentation of the stored data. It is responsible for
creating the appropriate tables, matrices and on-the-fly plots,
which it then embeds in an efficient and simple point and
click interface. The reports are fully customizable and their
definitions are stored in the database. PostgreSQL is used as
the underlying DMBS.

Stager names each distant monitoring application in a
monitoring location as an“observation point.” For example,
a traffic classification application and an RRT measurement
application are considered two different observation points.

Users of Stager have access to the data of different ob-
servation points through a Web Interface. Through the main
interface, shown at Figure 2, the user can select both the
observation point and time period she wishes. The data created
by the monitoring applications and stored byStager can
be presented either using a table format, or using a graph
interface.Stager’s interface also gives the user the ability to
see long-term network data aggregated by the back-end. By
clicking on the appropriate buttons of the user interface, the
user can instantly change the granularity of data shown from
minutes to hours, days, months and even years.

Since Stager is a generic tool, it consists of different
modules, each one written to suit the needs of a particular
application. Until nowStager included back-end modules to
collect and aggregate data for NetFlow, MPing, and SNMP.
Our work extendsStagerto accept data collected byAppMon.
To accomplish this, we built a new module responsible for
handling the specific data format, and create the ability of
observing multiple monitoring points with just a glimpse into
an easy to use and understand Web Interface.

IV. I MPLEMENTATION

In this section we present our design choices and describe
how we build our new system by integrating and extending
AppMonandStager.

A. Problem Description

AppMonis a simple, yet powerful tool, capable of present-
ing a very precise view of the traffic on a specific network.



Fig. 2. StagerWeb Interface. The interface gives the ability to the user to
see the data from one (or multiple) observation point for a selected period of
time.

It has the ability to provide instant information to network
administrators,e.g. that, currently, HTTP traffic accumulates
at 3Mbps and is responsible for 23% of the overall network
traffic.

The problem is that while RRD keeps full information
about the current and previous day, it starts auto-aggregating
data that were older than two days in an attempt to save
disk space and make data processing more manageable. As
time progresses, we lose the hour/minute/second precision
that is generated byAppMon. To provide a good overview
of a network’s traffic over time, wemustpreserve information
at a very small granularity. With the existing system it was
impossible to extract any valuable information from past
months since RRD aggregated the past data and then deleted
them.

To overcome the above problems and difficulties we decided
to integrateAppMon-reported results intoStager, and build an
AppMon-specific back-end to handle these results.

B. Approach

Both AppMonandStagerare made available as standalone
open-source applications. But even though we could easily
alter their code-base during the integration, one of our main
considerations was to integrate the two application in a way
that they could still be used as standalone and work indepen-
dently of each other.

Since both tools store and retrieve their necessary data from
files, extraction of data from these files and the creation of new
ones would produce the wanted results (sticking to the Unix
philosophy), without the need of modifying the programs’
source code.

C. Layered Architecture

Figure 3 presents the architecture resulting from the in-
tegration of the two tools. It is based on apseudo-layered
concept. As with all layered concepts and architectures, each
layer has no knowledge of what goes on, on the layers below
or above it. With this approach, no unnecessary modifications
are made toAppMonand we also get an additional advantage:
at any point in time,Stagercan be un-installed and reinstalled

Fig. 3. TheAppMon-over-Stagerlayered Architecture

withoutAppMonever knowing the difference. There is no need
to back up files, recompileAppMon, save settings,etc.

We logically divided the needed tasks in three distinct
operations:

1) Extract and Format.
2) Transfer and Store.
3) Input intoStager.

Based on the above list, we created three different sub-
modules each one performing one of the listed tasks.

D. Sub-module Implementation

We will not present the implementation details involving the
construction of each sub-module.

1) Extract and Format:The first module is responsible for
the extraction and formatting ofAppMondata. As described
before, AppMon uses an RRD Database to store all of its
gathered network traffic; so this sub-module has to extract
the appropriate data from there and format them in a more
”Stager-friendly” format. The actual implementation of the
aformentioned extraction and formatting is done by a shell
script using the RRD tool and standard Unix utilities.

2) Transfer and Store:The second sub-module is responsi-
ble for the transfer of the data extracted fromAppMon. There
are two possible scenarios on how this occurs. In the first one,
theAppMon-Sensor and theStager-Server are installed on the
same host. If this is the case, then the transferring of the file
is just a local copy of the temporary file (containing appmon
data) to theStagerdirectory. In the second scenario (Fig. 4)
the AppMon-Sensor and theStager-Server are installed on
different hosts, maybe even located in different networks.This
scenario is more likely since most network administrators and
researchers monitor more than one subnets. Each network has
anAppMon-Sensor installed that reports back it’s results. Since
it is not wise to transfer sensitive network-related information
over the Internet, we chose to encrypt the results file before
sending it over the wire.

3) Input into Stager:The last module has to supply the
network-records directly into theStager tool, which will
in turn insert them in the PostgreSQL database. We have
implemented this module using PHP, in order to be compatible
with the rest ofStager’s scripts. OurAppMon-specific module
is created in a way thatStagercan automatically use it without
any user intervention. For each registered observation point,
Stagercalls ourAppMonmodule providing the name of the
current observation point. Our module uses this information



Fig. 4. Step 2: A number of remoteAppMon-Sensors sending network-
monitoring data securely (encrypted files) to a centralStager-Server where
our last sub-module will insert them intoStager’s database.

to locate the file containing the data for the specific obser-
vation point amongst the ones containing data for different
observation points. FinallyStager takes control of our data
and automatically aggregates and presents them as necessary.

V. EXPERIMENTAL EVALUATION

A. Deployment

In our experiments we included 4 different sensors in 4
different networks. In all 4 networks, it is now possible to
examine spikes in traffic, throughStager, that we were not
able to do previously. Also throughStager’s aggregation, we
can now see the trends in network applications (for example all
networks were running Bittorrent clients) and how these trends
change over time (the percentage of bandwidth allocated to
Bittorrent grows steadily over time while other protocols such
as FTP or Gnutella either remained the same, or declined).

B. Resulting Data from Web Interface

The user is now capable of usingStager’s interface to
examine data created byAppMon which were not available
in the old AppMonWeb interface. In the main interface, the
user can now choose the specificAppMon-Sensor he wishes
to observe, and select the exact time-period.

The report created by the previous step, is immediately
available to the user for examination. Using the time-period
arrows of the UI, the user can literally follow the trail of
bandwidth consumption in time.

VI. CONCLUSION

In this paper we argued for the need for long-term storage
of the data created by network monitoring applications. These
applications while very useful to network administrators and
researchers worldwide, produce a great amount of data (pro-
portional to the traffic of the monitored network), which, if
not handled properly, is either lost (deleted) or useless (not
presentable in an efficient way).

Fig. 5. Actual report for a remoteAppMon sensor, showing the traffic
distribution for various network protocols.

In our study, we choseAppMonas our network monitoring
toolkit and Stageras our data storage and aggregation tool.
Our aim was to combine the two tools, thus creating a system
which would efficiently and securely monitor and transfer data,
from remoteAppMonsensors, to a centralStagerserver. This
combination gave us access to data that were not available
to us, through the oldAppMon interface. AppMon’s small
granularity was not restricted any more by RRDs aggressive
aggregation and we had the ability to request even 4-month
old, 5-minute screenshots of our monitored networks.Stager’s
automatic aggregation gave us a new, more detailed view of
our monitored networks. We can now request a network traffic
screenshot of our networks atanypoint in time (e.g., 13:15 on
the 3rd of the month, 5 months ago), aggregated long period
views, and everything in between.

ACKNOWLEDGMENTS

This work was supported by the IST project LOBSTER
funded by the European Union under contract number 004336
and by the Marie Curie Actions - Reintegration Grants project
PASS.

REFERENCES

[1] A. Moore and K. Papagiannaki, “Toward the Accurate Identification of
Network Applications,”Passive And Active Network Measurement: 6th
International Workshop, PAM 2005, Boston, MA, USA, March 31-April
1, 2005: Proceedings, 2005.

[2] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, and M.Faloutsos, “Is
P2P dying or just hiding,”IEEE Globecom, 2004.

[3] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “Blinc: Multilevel
traffic classification in the dark,” inProceedings of ACM SIGCOMM 2005
Conference, 2005.

[4] S. Sen, O. Spatscheck, and D. Wang, “Accurate, scalable in-network
identification of p2p traffic using application signatures,” Proceedings of
the 13th conference on World Wide Web, pp. 512–521, 2004.

[5] K. Lakkaraju, W. Yurcik, and A. J. Lee, “Nvisionip: Netflow visualiza-
tions of system state for security situational awareness,”in Proceedings
of VizSEC/DMSEC 2004 Conference, October 2004.

[6] D. Antoniades, M. Polychronakis, S. Antonatos, E. P. Markatos, S. Ubik,
and A. Oslebo, “Appmon: An application for accurate per application
traffic characterization,” inProceedings of IST Broadband Europe 2006
Conference, December 2006.

[7] A. Oslebo, “Stager: A web based application for presenting network
statistics,” inProceedings of NOMS 2006 Conference, 2006.


