Abusing Locality in Shared Web Hosting

Nick Nikiforakis, Wouter Joosen
DistriNet, Katholieke Universiteit Leuven
{nick.nikiforakis,wouter.joosen}

@cs.kuleuven.be

ABSTRACT

The increasing popularity of the World Wide Web has made
more and more individuals and companies to identify the
need of acquiring a Web presence. The most common way
of acquiring such a presence is through Web hosting com-
panies and the most popular hosting solution is shared Web
hosting.

In this paper we investigate the workings of shared Web
hosting and we point out the potential lack of session iso-
lation between domains hosted on the same physical server.
We present two novel server-side attacks against session stor-
age which target the logic of a Web application instead of
specific logged-in users. Due to the lack of isolation, an at-
tacker with a domain under his control can force arbitrary
sessions to co-located Web applications as well as inspect
and edit the contents of their existing active sessions. Using
these techniques, an attacker can circumvent authentication
mechanisms, elevate his privileges, steal private information
and conduct attacks that would be otherwise impossible.
Finally, we test the applicability of our attacks against com-
mon open-source software and evaluate their effectiveness in
the presence of generic server-side countermeasures.

Categories and Subject Descriptors

K.4.4 [Electronic Commerce]: Security; K.6.5 [Security
and Protection]: Unauthorized access

General Terms

Security, Design, Experimentation

Keywords

Web applications, session identifiers, session storage, server-
side attacks

1. INTRODUCTION

In 1993 CERN announced the release of the World Wide
Web as a free product available to everyone. Today, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EUROSEC’11, Salzburg, Austria.

Copyright 2011 ACM 978-1-4503-0613-3/11/04 ...$10.00.

Martin Johns
SAP Research - Karlsruhe
martin.johns@sap.com

WWW has become synonymous to the whole Internet in-
frastructure since for most people, “Internet” is accessed
through their browser. In this ever-expanding online world,
more and more individuals and companies identify the need
to have a Web presence, i.e, a website to provide services,
sell goods and communicate news to their customers. Thus
thousands of domain names are being registered every day
and thousands of hosting plans from Web hosting providers
are acquired. At the time of writing, there are more than
120 million active registered domains'. Each of these do-
main names, finally points to the IP address of a server,
hosting the content of each individual website. With the ex-
ception of large cooperations, institutions and government
services, the majority of websites are hosted on companies
that provide Web hosting services.

Web hosting providers offer a variety of hosting products,
ranging from shared solutions to fully dedicated servers.
While competition has driven the prices of all hosting prod-
ucts down, the most economical solution was and still is
“shared hosting”. In shared Web hosting, the client is given
access to a limited number of resources (e.g., a limited num-
ber of Gigabytes on disk and of SQL databases) which he can
use to host his own website/Web application. The physical
servers that provide the shared-hosting resources are shared
amongst hundreds or even thousands of clients at the same
time. Thus, the user doesn’t suffer only from limited per-
formance but there is also a potential for limited security
since his Web applications are co-located with other scripts
that can act maliciously by design or by omission. Due to
this fact, several barriers are placed for each user in-order
to ensure that a malicious or vulnerable application cannot
interfere with the others [2].

In this paper we present two new attacks against the ses-
sion management system of Web applications in shared host-
ing environments: Session Snooping and Session Poisoning.
To be susceptible to these attacks, a Webserver’s configu-
ration has to meet certain criteria in respect to the way
sessions are handled (see Sec. 3 for details). If these pre-
conditions are fulfilled, an adversary who controls a Web
application that is hosted on such a server, is able to at-
tack all other applications that share this locality. More
precisely, he is able to force arbitrary sessions to the vulner-
able Web applications (Session Poisoning) or to inspect and
modify their session values (Session Snooping). This way,
an attacker can circumvent authentication procedures, steal
private data, evade Web application firewalls, and use this
attack as an intermediate step to launch other attacks such

http://www.domaintools.com/internet-statistics/

Webserver

Common session data store
Dir: /tmp

Application A Application B
Host: www.alice.com Host: www.bob.net

<‘ Dir: /vhost/www/alice.com Dir: /vhost/www/bob.net L
ﬁlD:anM... \SID:bd76a...

o O

User 1 User 2

Figure 1: Common session store for shared hosting

as SQL injection and command execution. Unlike existing
attacks against session identifiers which target authenticated
users, our attacks are performed on the server and they cir-
cumvent a Web application’s logic.

For most parts of this paper, we focus on the ubiquitous
PHP programming language to present and evaluate our
findings; a sensible choice given the perceived dominance
of PHP in the area of shared hosting offers. However, the
discussed issues are not necessary unique to PHP. In fact,
every Web application framework that exposes the neces-
sary preconditions is potentially susceptible. To validate
this assumption, we also briefly examine the session han-
dling provided by Mod_Python and Mod_Perl and identify
similar issues as with PHP (see Sec. 4.3).

The rest of our paper is structured as follows: In Section 2
we present background information concerning the workings
of session identifiers on the server side. In Section 3 we de-
scribe the aforementioned server-side attacks against session
identifiers and we explore their implications. We evaluate
our attacks against open-source software in Section 4, we
discuss the reasons that made these attacks possible in Sec-
tion 5 and test generic server-side countermeasures in Sec-
tion 6. In Section 7 we present the related work and we
conclude our paper in Section 8.

2. BACKGROUND

In this section we provide the necessary background knowl-
edge about session identifiers to understand the attacks pre-
sented in Section 3.

The most common protocol used today, the Hyper Text
Transfer protocol and its secure version (HTTPS) are by
design stateless. While there are several ways of enforc-
ing basic access control, such as HT'TP Authentication and
client-side SSL certificates, none can provide the flexibility
and fine-grained control of session identifiers. Thus session
identifiers are the de facto modern mechanism used in vir-
tually all non-static webpages.

The first time that a user visits a website/Web applica-
tion, he is assigned a session identifier (typically consisting
of a long pseudo-random alpha-numerical string). This iden-
tifier is communicated to the client using a variety of ways,
the most common of which, is through Cookie headers. On

the server-side, the Web application binds the identifier with
information about the user (e.g., if he is logged in and his
user privileges). On every subsequent request, the client pro-
vides the Web application with the identifier that was first
entrusted to him. This way the application can recognize
the user amongst many requests and respond appropriately.
When sessions are used to recognize a logged-in user, the
session identifier token is as sensitive as the username and
password combination of the logged-in user.

While the client-side part of session management is straight-
forward and well-understood by the security community,
the corresponding server-side is implementation-specific and
hasn’t received as much attention as its client-side counter-
part. In PHP, when a new session identifier is requested
by the Web application (e.g., through the session_start ()
function), PHP generates a pseudo-random identifier which
it returns to the application. All the values that the appli-
cation stores in the session id, are stored, by default, on a
flat file on the disk of the Webserver. On standard instal-
lations of PHP and unless instructed otherwise by the Web
programmer or the Web administrator, the file is stored in
a temporary directory, (e.g. /tmp), and the name of the file
is predictable and consists of the string sess followed by an
underscore and the value of the session identifier. The values
that are set by the Web application are stored in this file,
in a manner which will enable PHP to re-construct them on
subsequent requests.

At a later request of the same user, PHP uses the session
identifier provided by the request to locate the file containing
the previously-set session values and load them in the global
session array ($_SESSION) that the Web application utilizes.
The session identifier is actually read from the cookie value
that the user’s browser appended to the user’s request. With
PHP managing all the details of session identifiers, the Web
application can track the user in time and use simple logic
built around values of the global session array, to enforce
the desired access control to its resources.

3. LOCALITY ABUSE

In Section 2 we provided an overview of how PHP handles
session identifiers and how user-provided information (the
value of the session Cookie) is used to determine the session
file containing the appropriate stored information for the
user’s session. The two attacks that we are about to present
are based on the following two weaknesses:

1. PHP’s standard session mechanisms do not offer a way
for a Web application to distinguish between sessions
that were created by itself and sessions that were cre-
ated by other Web applications located on the same
physical server

2. The session store of PHP installations is by default a
temporary folder which is shared among all the PHP
scripts running on that physical machine, see Fig. 1.

The combination of the two above weaknesses enable an
attacker to create session identifiers from his own Web appli-
cation and force them as legitimate session identifiers to the
other Web applications residing on the same physical server
(Session Poisoning). It also allows the attacker’s scripts to
open session identifiers that were created by co-located Web
applications, inspect the stored values and make arbitrary
changes to them (Session Snooping). The specific details for
these attacks are presented in the following two sections.

Webserver

Common session data store
Dir: /tmp

A "

Application A Attacker
Host: www.alice.com Host: www.mallory.com

J Dir: /vhost/www/alice.com Dir: /vhost/www/mallory.com L
ND=a3d4fm %Dzaaw .

Adversary

Figure 2: Attacking the common session store

Code Listing 1 Session Poisoning script

<?7php
session_start ();

$_SESSION[‘isadmin’] = true;
$_SESSION[‘userid’] = 1;
$_SESSION[‘user’] = "admin";

print session_id ();
7>

3.1 Session Poisoning

In a Session Poisoning attack, the attacker tries to cir-
cumvent the logic of a victim Web application by creating
a session with arbitrary content and forcing it as a valid
session onto the vulnerable Web application. For example,
consider two domains, alice.com and mallory.com hosted
on the same physical server and using a common session
store. Alice.com has a Web administration interface where
an administrator can login and perform privileged opera-
tions. When the administrator provides valid credentials, a
boolean variable isadmin is created in his active session and
it is set to true. This enables the Web application to track
him between page-loads and to provide him administrative
rights without the need for re-sending his credentials with
each request. The malicious owner of mallory.com creates a
session for mallory.com where he also sets a boolean variable
named isadmin to true. In the next and final step, the user
from mallory.com visits the Web administration interface
at alice.com where he provides as a session-cookie the ses-
sion created for mallory.com. Since both Web applications
share a common session store, alice.com will locate and load
the session file created by mallory.com, which will in-turn
provide the attacker with administrative rights (see Fig. 2).

In the aforementioned process, the attacker can force the
malicious session identifier, simply by adding an HT'TP Coo-
kie header with the value of the session identifier, as re-
turned by mallory.com. The only real difficulty of the ma-
licious user controlling mallory.com is to predict the names
and contents of the session variables needed to grant him
administrative rights. An attacker can compensate for this

by using a large set of commonly-used variable names (see
Listing 1). As long as the subset of variables needed exist in
the set of variables the attacker creates, the vulnerable Web
application will ignore the rest and take into account only
the ones dictated by its access-control logic. Additionally, if
the victim application is not a collection of custom scripts
but is an open-source software product, the attacker can in-
spect the source-code of the particular application, discover
the access-control variables and set them appropriately.

3.2 Session Snooping

The Session Snooping attack is essentially a reverse of
the Session Poisoning attack where the attacker can inspect
active sessions created by other Web applications and ar-
bitrarily change their content. In this scenario, alice.com
hosts a Web application that users can register, login and
access different content based on their user privileges such
as a forum or a Webmail platform. The malicious adminis-
trator of mallory.com, visits alice.com registers an account
and logs-in. Alice.com populates a variable named userid
in the attacker’s session with the user’s identifier which is
used to provide him with the right content from the Web
application’s database. At this point, the attacker switches
to mallory.com and instructs his malicious scripts to load
the session corresponding to the session identifier provided
by alice.com. The attacker can now inspect the variables
set by alice.com and change the userid to that of another
user using standard session functionality. The final step for
the attacker, consists of simply visiting again the vulnerable
Web application at alice.com. The application will reload
the values stored in the session file corresponding to the at-
tacker’s session and thus “recognize” the attacker as a differ-
ent user. The attacker has now full rights over the account
of that user and depending on the specifics of the applica-
tion, the attacker will be able to get access to a wide range of
private data such as the user’s home address, emails, credit
card information and so on.

It is important to point out that changing a session iden-
tifier to a user-provided value is a legitimate operation in
PHP and can be performed by the built-in session_id()
function. Even if the function did not exist, Web frame-
works still rely on the user to provide the “correct” session
identifier, in which case the attacker could simply change the
value of his HT'TP Cookie header as in Section 3.1. Lastly,
note that it is advantageous for an attacker to use the built-
in session management functions to load, inspect and edit
session variable values instead of opening the session file di-
rectly since potential protections that are implemented in
the file-system level may be lifted when the data is accessed
through PHP’s session management system(see Section 6.2).

3.3 Resulting malicious capabilities

Session snooping can be used as an intermediate step
which will help the attacker to launch new attacks against
a Web application that would otherwise be impossible. We
believe it is a common programming practice to trust the
values of set variables when the variables are not directly
affected by user input. Through Session Snooping, any vari-
able stored in the global session array ($_SESSION) can be
arbitrarily modified by an attacker. Thus, while a login
script may be thoroughly checked for SQL injection attacks,
the values that are set by the programmer’s script inside ses-
sion identifiers may be used directly in SQL queries without

Code Listing 2 SQL Injection through Session Snooping

<?php

if (isset($_SESSION[‘userid’])){
$result = db_request ("SELECT * from users
where id = " $_SESSION[‘userid’]);
$row = mysql_fetch_array($result);

further sanitization. Code listing 2 shows a snippet of PHP
code that is responsible of getting the personal details of a
logged-in user based on his user identifier. This action is
very common in Web applications which provide a user the
option to view and edit his personal profile.

Traditionally the programmer has no reason to sanitize
the $_SESSION[‘userid’] value, since it is only set by the
database as a result of successful user login (not shown).
However, through Session Snooping, an attacker can change
the value of userid to an SQL statement and thus perform
an SQL injection attack, that was previously not possible.
In addition to SQL injection, Session Snooping can be used
to modify the values of session variables that affect local file
operations, remote file includes, database settings and so on.

Even more interestingly, the attack vectors are not present
in external HTTP(S) traffic towards the vulnerable Web ap-
plication. That is because, the attacker modifies the con-
tents of a session file (through traffic directed at his domain)
which is at a later request internally loaded into the run-
ning PHP environment of the victim Web application. This
means that Web application firewalls, both rule-based and
behaviour-based [10, 13], that check the contents of headers
will be unable to stop common Web attacks. For the same
reason, the Webserver logs of the victim domain will con-
tain no information about the actual attack, making post-
exploitation forensic investigations much harder.

3.4 Attack variants

In the above sections we assumed that the adversary is
controlling a Web application which is co-hosted on the same
server as the attacked application. Such circumstances are
not a necessary precondition for the attacks to be feasible.
In this section we list alternative scenarios that enable the
adversary to exploit common session data stores:

Co-located identical applications: Consider the fol-
lowing scenario: On a shared hosting server a given Web
application (e.g., a specific CMS) is installed by two differ-
ent hosting customers. Based on the observations above, a
legitimate user on one of these installations (e.g., an user
with administrative rights) can force the second application
to use the session data store which was originally filled by
the first application. Depending on the application’s logic,
this might result in gaining access to the second application,
potentially even with administrative rights.

PHP code injection: Applications written in PHP fre-
quently expose code injection vulnerabilities. Such vulnera-
bilities enable an attacker to execute PHP commands with
the rights of the vulnerable applications. Hence, he can con-
duct the attacks described above against all co-located Web
applications, even if these applications do not expose any
vulnerabilities of their own.

3.5 Finding co-located applications

A practical issue for an attacker, is that of finding which
websites/Web applications are located on the same physical
server as his own. Depending on the configuration details
of each Webserver this can be done in multiple ways with
varying degrees of success. If a Webserver permits it, the
attacker can use his scripts to recursively list directories to-
wards the root of the file-system and record the names of
his co-located applications. In cases where the Webserver is
running scripts with the permissions of their owners (see Sec-
tion 6.1) the owner of each listed file can also identify URIs
of other applications. Lastly, an attacker can utilize online
services? which, given a URI, report other URIs hosted on
the same physical server based on matching IP addresses
and other heuristics.

4. PRACTICAL EVALUATION

4.1 Common Session Stores

In Sections 2 and 3 we discussed about the temporary
directories in which PHP saves, by default, the files corre-
sponding to active sessions and how this behavior can be
abused to perform server-side attacks against Web applica-
tions. We decided to perform a simple experiment to dis-
cover what percentage of PHP websites keep the default,
and unsafe, session save path (session.save_path in PHP)
and what percentage change it to per-domain value.

PHP provides a function named phpinfo() which prints
a detailed report of all its configuration parameters. Among
others, the save path of sessions is included in the gener-
ated report. This function is normally used for debugging
and testing purposes however in many cases the PHP files
that make use of phpinfo() are forgotten on the Webserver.
Using Google, we located phpinfo pages on websites and
crawled through the first 500 of them, recording the stated
session path. Surprisingly, we discovered that 89.71% of
all sites used a default path (e.g., /tmp,/var/lib/php4 and
C:\PHP\sessiondata). This means that for 9 out of 10
tested websites, a per-domain session path is not forced by
each Webserver and that the programmer of each Web ap-
plication did not change the default session configuration.

While our experiment is certainly not an exhaustive one,
we believe that it still demonstrates that keeping the default
session save path is the common case. At this point, one
might think that finding a phpinfo page at a specific website
is already enough evidence that security is not taken seri-
ously and thus can’t be used as a global metric towards the
save path of sessions. We argue that this is not the case.
Since phpinfo pages can be generated simply by calling the
phpinfo() function, their mere presence can’t be used to
measure the security of a Webserver installation. On the
other hand, the various configuration parameters presented
by the phpinfo pages, give a more complete picture of the
security mechanisms and configurations set in place by the
Web administrators and in our case attest to the insecure
practice of common session stores.

4.2 Effectiveness

In this section we present a security evaluation of the at-
tacks described in Section 3 by testing them against popu-

2http://www.yougetsignal .com/tools/
web-sites-on-web-server/

lar open-source Web applications. It is widely accepted that
open-source software is more secure that proprietary soft-
ware since many developers can review the code and report
vulnerabilities. In our case however, open-source Web appli-
cations are an easier target since an attacker knows exactly
which variables to set to which values through a Session Poi-
soning attack. For our evaluation, we decided to investigate
open-source Content Management Systems.

Content Management Systems (CMSs) are software prod-
ucts that allow users to create and manage completely dy-
namic websites without the need of directly writing code. A
recent study showed that more than 24.1% of the top 1 mil-
lion websites (as reported by Alexa.com) use a CMS [6]. Due
to their popularity, an attack against a CMS automatically
means an attack against millions of its installations, much
like attacks against Operating Systems or popular software.

Specifically, we investigated the session handling techniques
of 10 popular CMSs to discover if they were vulnerable to
Session snooping/Session poisoning attacks. From these ten
CMSs (Joomla, WordPress, PHPNuke, Concrete5, Drupal,
WolfCMS, ImpressCMS, Mambo, B2Evo and DotClear), 9
of them were using sessions (WordPress doesn’t natively use
sessions) and 2 out of these 9 were using the default PHP ses-
sion management functionality (Concrete5 and WolfCMS)
which makes them vulnerable when installed in a shared
hosting environment. Using the described session attacks
an attacker can login as an administrator into these two
CMSs without knowing the administrator password.

4.3 Further affected technologies

In addition to our practical experiments with PHP, we
examined mod_python and mod_perl to evaluate whether the
observed issues are specific to PHP or if similar problems can
be also encountered in other frameworks. We chose these
two technologies as they are also frequently offered in shared
hosting scenarios, probably because they are free and work
well with the popular Apache Webserver.

Mod_perl does not provide native session handling. In-
stead, specialized Perl libraries are provided for this task. A
common choice is Apache: :Session. Very similar to PHP,
the file-based mechanism of Apache: :Session defaults to a
common, server-global temporary directory. The filename
of the session file is identical to the session ID value and the
library’s API-call to retrieve the session data only takes the
session ID as the only argument.

Mod_python’s session handling mechanism utilizes in its
default configuration a global session storage file called
mp_see.dbm.db which holds the data values for all currently
active sessions. This file is global for all hosted applications,
regardless of applications’s domains. Retrieval of session
data is handled transparently for the application program-
mer and apparently is solely based on the value of the pysid
cookie.

In our practical experiments both frameworks proved to
be susceptible to the attacks described in Section 3.

S. DISCUSSION

To understand the circumstances that have led to these
vulnerabilities, one has to recall the history of HT'TP: In its
original form and early versions HT'TP had neither a session
concept nor native capabilities for shared hosting. While the
latter was added to HTTP 1.1 via the Host—header, the for-
mer was left to the programmers, which resorted to session

identifiers (see Sec. 2). In consequence, we have a case of
ill fitted separation of concerns: The Webserver is responsi-
ble to route the requests to the correct executable (deducted
from the Host-header and the requested URI), while the pro-
grammer’s duty is to implement the session handling. But
as witnessed above, in shared hosting scenarios, these two
functionalities should not be handled separately as there is a
functional dependency between a given session and its Host
or its Hosts in cases in which the Web application spans
more than one (sub-)domain.

This problem is not easily addressed in a general fash-
ion. In most scenarios the Webserver, that handles the
Host separation, the application framework, that provides
the session handling, and the actual Web application are
three distinct units, all created and maintained separately.
However, without support from the application, neither the
framework nor the server can assess to which set of domains
(i.e, Host-header values) a given session should apply, ren-
dering default isolation mechanism susceptible to potential
weaknesses.

6. EXISTING COUNTERMEASURES

Due to the popularity of shared Web hosting, much ef-
fort has been put into making shared hosting installations
more secure. In this section, we will overview the most com-
mon server-side attack countermeasures that are deployed
on Webservers and how they stand up against the server-
side session attacks described in Section 3.

6.1 suEXEC and suPHP

In default Apache and PHP installations, all PHP scripts
execute under a single user, the Webserver user, regardless
of their path on the disk or of the owner of the file.

Two of the most popular solutions to this insecure behav-
ior are suEXEC ? and suPHP “. While the two solutions are
implemented differently the end goal of their developers is
the same; to have each script run under the permissions of
their owners and not under the permissions of the calling
Webserver. This means that the scripts of user A have dif-
ferent permissions of user B and thus each is protected from
the other. Unfortunately, the extra security comes at a cost.
Even though we couldn’t locate official comparisons, indi-
vidual users have benchmarked their installations and have
found both solutions to incur a performance penalty rang-
ing between 2,500% to 3,600% [7]. We believe that making
a Webserver 36 times slower comes into antithesis with host-
ing companies’ profit strategy which consists of placing as
many users as possible on a single physical server. Even if
we assume however that a hosting company deploys such a
solution, a server-side session attack is still possible.

More specifically, Session Poisoning can still be executed
on shared hosting sites that use a common session store. The
only modification to the methodology presented in Sec. 3.1
is for the attacker to change the session file permissions, just
before forcing it onto other Web applications. By making
the file world-readable, the victim Web application is “al-
lowed” to open the attacker’s poisoned session file. On the
other hand, Session Snooping is no longer possible since the
attacker’s scripts cannot open the session files of other Web
applications and thus can’t change their content.

3suEXEC http://httpd.apache.org/docs/current /suexec.html

‘suPHP http://www.suphp.org

6.2 Suhosin patch

Suhosin®is a server-side protection mechanism which can,
among others, protect session files by symmetrically encrypt-
ing their content. Thus, if an attacker opens a session file on
a Webserver with the Suhosin mechanism, he can no longer
inspect the session contents or intelligibly edit the values.
The encryption/decryption key of each session consists of
a global key (by default common to all scripts running on
the same server) combined with one or more of the follow-
ing values: the remote IP address of the current visitor, the
Document Root of the executing script and the User-Agent of
the visitor’s browser. The active combination of the above
values differs between installations and depends upon the
installation framework and custom choices of Web adminis-
trators.

In our described attacks, the only fields that could differ
between an attacker’s encryption key and the encryption key
of all other Web applications situated on the same server are
the Document Root field and the global key. The remote 1P
address and the User-Agent of the attacker’s browser will
be the same towards all Web applications. This effectively
means, that unless the Document Root encryption option is
active and/or a Web application has explicitly modified the
global Suhosin key, an attacker will be able to correctly en-
crypt and decrypt the session files of a given Web application
and thus circumvent the protection provided by Suhosin.
Note also that the encryption and decryption happens au-
tomatically by the PHP framework when the appropriate
session management functions are called, thus the attacker
doesn’t need to manually perform these tasks.

6.3 PHP Safe Mode

The, since June 2009 deprecated, PHP Safe Mode® could
be configured to mitigate the attack via restricting the ses-
sion_start () method. However, reliance on Safe Mode fea-
tures is actively discouraged and Safe Mode will be removed
completely in the next major version of PHP, hence, on mod-
ern set-ups this option may not exist at all.

7. RELATED WORK

To the best of our knowledge, this paper is the first one
to describe server-side data attacks against session identi-
fiers. A similar technique is described in [12], where an at-
tacker can browse the common session store of a shared host
and use the data to perform session hijacking or expose pri-
vate information. Note however, that the described attack
targets the authenticated clients of a Web application, as
opposed to the server-side attacks described in Sec. 3 which
target the logic of the Web application itself. Additionally, a
removal of read-permissions from the common session store
by the administrator would stop the described attack (since
directory listing is no longer feasible) but would have no im-
pact on Session Snooping and Session Poisoning since these
attacks do not rely on a list-able session store.

The client-side of session identifiers has, in general, been
a common target of Web application attacks. The most
standard way of hijacking a session identifier is through a
Cross-site scripting attack. Cross-site scripting [15] (XSS)
is a type of code injection attack, where the victim exe-
cutes Javascript code on behalf of the attacker. XSS are

®Suhosin http://www.hardened-php.net/suhosin
6SafeMode http://php.net/manual /features.safe-mode.php

among the top attacks conducted today against Web appli-
cations [11]. Apart from manually finding and exploiting
them, Kieyzun et al. [8] have also shown that it is possible
to automate the procedure.

Other common attacks against session identifiers include
Cross-site Request Forgery (CSRF) [14], session fixation [9]
and session sidejacking [4]. Using CSRF, a malicious website
is able to generate arbitrary requests towards trusted web-
sites taking advantage of the fact that the visiting user is
authenticated to the trusted websites and his session cook-
ies will be appended automatically by his browser. In session
fixation attacks, an attacker can force a victim to use a ses-
sion identifier that is already known to him. This attack
can be mainly performed on websites that accept session
information as a GET parameter. Session sidejacking, is es-
sentially session hijacking performed through side channels
such as packet sniffing on open wireless or hubbed networks.

In addition to attacks against session identifiers, the com-
plexities and subtleties of the HTTP protocol have also given
rise to other, less common attacks against Web applications.
Carettoni and Di Paola [5] were among the first ones to
notice that there is no formal definition of parameter prece-
dence for cases when a URI contains two or more parameters
with the same name. The lack of a formal definition has led
to implementation-specific behaviors which can be exploited
by attackers, to inject new values in existing URIs. The new
parameter values can, among others, overwrite hard-coded
parameters and corrupt both the client-side as well as the
server-side logic of a Web application. This attack, namely
HTTP Parameter Pollution (HPP), was recently verified by
Balduzzi et al. [1] who discovered that 29.88% from 5,000
tested websites were vulnerable to it. Researchers have also
discovered that different inputs can lead Web applications
to different code paths which in turn respond in different
timings. These differences are measurable and can lead to
the exposal of private information [3].

8. CONCLUSION

Shared hosting is the most popular type of Web hosting
mainly due to its low-monthly costs and easy administra-
tion. At the same time however, Web applications stored on
shared hosting plans, suffer from limited performance and,
more importantly, limited security.

In this paper we presented two new attacks that abuse the
lack of proper isolation between session identifiers of differ-
ent Web applications hosted on the same physical server. We
experimentally demonstrated that most websites use a stan-
dard and global session store which an attacker in control
of a domain hosted on a shared hosting server can abuse.
The resulting attacks, allow a malicious user to circum-
vent authentication mechanisms of vulnerable Web appli-
cations, elevate his privileges, steal private information and
conduct attacks that would be otherwise impossible. Fi-
nally, we tested our attacks against popular Content Man-
agement Systems and showed that they are effective even
when generic server-side countermeasures are deployed.

Acknowledgements:.

We thank the anonymous reviewers for their helpful com-
ments. This research is partially funded by the Interuni-
versity Attraction Poles Programme Belgian State, Belgian
Science Policy, the IBBT, the Research Fund K.U.Leuven
and by the EU Project WebSand (FP7-256964).

[10]

[11]

[12]

[13]

REFERENCES

M. Balduzzi, C. T. Gimenez, D. Balzarotti, and

E. Kirda. Automated Discovery of Parameter
Pollution Vulnerabilities in Web Applications. In
NDSS’11, 2011.

T. Ballad and W. Ballad. Securing PHP Web
Applications. Addison-Wesley Professional, 2008.

A. Bortz and D. Boneh. Exposing private information
by timing web applications. WWW ’07. ACM, 2007.
E. Butler. Firesheep.
http://codebutler.com/firesheep.

L. Carettoni and S. D. Paola. HT'TP Parameter
Pollution. In OWASP AppSec Europe, 2009.

Water and Stone: Open Source CMS Market Share
Report, 2010.

S. Herbert. Using suPHP To Secure A Shared Server.
http://blog.stuartherbert.com/php/2008/01/18/
using-suphp-to-secure-a-shared-server/.

A. Kieyzun, P. Guo, K. Jayaraman, and M. Ernst.
Automatic creation of sql injection and cross-site
scripting attacks. In ICSE’09, May 2009.

M. Kolsek. Session Fixation Vulnerability in
Web-based Applications. http://www.acrossecurity.
com/papers/session_fixation.pdf.

T. Krueger, C. Gehl, K. Rieck, and P. Laskov.
Tokdoc: a self-healing web application firewall. SAC
’10. ACM, 2010.

OWASP Top 10 Web Application Security Risks.
http://www.owasp.org/index.php/Category:
OWASP_Top_Ten_Project.

PHP Security Consortium - PHP Security Guide:
Shared Hosts.
http://phpsec.org/projects/guide/5.html.

W. Robertson, G. Vigna, C. Kruegel, and R. A.
Kemmerer. Using generalization and characterization
techniques in the anomaly-based detection of web
attacks. In NDSS’06, 2006.

C. Shiflett. Cross-Site Request Forgeries.
http://shiflett.org/articles/
cross-site-request-forgeries.

The Cross-site Scripting FAQ.
http://wuw.cgisecurity.com/xss-faq.html.

